Solutions: Section 2.1

1. Problem 1: See the Maple worksheet to get the direction field. You should see that it looks like all solutions are approaching some curve (maybe a line?) as $t \rightarrow \infty$. To be more analytic, let us solve the DE using the Method of Integrating Factors.

$$
y^{\prime}+3 y=t+\mathrm{e}^{-2 t} \quad \Rightarrow \quad \mathrm{e}^{3 t}\left(y^{\prime}+3 y\right)=\mathrm{e}^{3 t}\left(t+\mathrm{e}^{-2 t}\right) \quad \Rightarrow \quad\left(\mathrm{e}^{3 t} y(t)\right)^{\prime}=t \mathrm{e}^{3 t}+\mathrm{e}^{t}
$$

Integrate both sides Hint: We need to use "integration by parts" to integrate $t \mathrm{e}^{3 t}$. Using a table as in class:

$$
\begin{array}{|c|c|c|}
\hline+ & t & \mathrm{e}^{3 t} \\
- & 1 & (1 / 3) \mathrm{e}^{3 t} \\
+ & 0 & (1 / 9) \mathrm{e}^{3 t}
\end{array} \quad \Rightarrow \quad \int t \mathrm{e}^{3 t} d t=\frac{1}{3} \mathrm{e}^{3 t}-\frac{1}{9} \mathrm{e}^{3 t}
$$

Putting it all together,

$$
\mathrm{e}^{3 t} y(t)=\frac{1}{3} t \mathrm{e}^{3 t}-\frac{1}{9} \mathrm{e}^{3 t}+\mathrm{e}^{t}+C
$$

so that

$$
y(t)=\frac{1}{3} t-\frac{1}{9}+\mathrm{e}^{-2 t}+C \mathrm{e}^{-3 t}
$$

Notice that the last two terms go to zero as $t \rightarrow \infty$, so we see that $y(t)$ does approach a line:

$$
\frac{1}{3} t-\frac{1}{9}
$$

as $t \rightarrow \infty$.
2. Problem 3: See Maple for the direction field. Very similar situation to Problem 1. Let's go ahead and solve:

$$
y^{\prime}+y=t \mathrm{e}^{-t}+1
$$

Multiply both sides by e $\int p(t) d t=\mathrm{e}^{t}$:

$$
\mathrm{e}^{t}\left(y^{\prime}+y\right)=t+\mathrm{e}^{t} \quad \Rightarrow \quad\left(\mathrm{e}^{t} y(t)\right)^{\prime}=t+\mathrm{e}^{t}
$$

Integrate both sides:

$$
\mathrm{e}^{t} y(t)=\frac{1}{2} t^{2}+\mathrm{e}^{t}+C \quad \Rightarrow \quad y(t)=\frac{1}{2} t^{2} \mathrm{e}^{-t}+1+C \mathrm{e}^{-t}
$$

This could be written as:

$$
y(t)=1+\frac{t^{2}}{2 \mathrm{e}^{t}}+\frac{C}{\mathrm{e}^{t}}
$$

so that it is clear that, as $t \rightarrow \infty, y(t) \rightarrow 1$, which we also see in the direction field.
3. (Extra Practice, not assigned) Problem 11: See Maple for the direction field, where it looks like all solutions are approaching some periodic function as $t \rightarrow \infty$. Let's solve it:

$$
y^{\prime}+y=5 \sin (2 t)
$$

As in the last exercise, multiply both sides by e^{t} :

$$
\mathrm{e}^{t}\left(y^{\prime}+y\right)=5 \mathrm{e}^{t} \sin (2 t) \quad \Rightarrow \quad\left(\mathrm{e}^{t} y(t)\right)^{\prime}=5 \mathrm{e}^{t} \sin (2 t)
$$

To integrate the right-hand-side of this equation, we will need to use integration by parts twice. In tabular form:

++	e^{t}	$\sin (2 t)$
-	e^{t}	$-(1 / 2) \cos (2 t)$
+	e^{t}	$-(1 / 4) \sin (2 t)$

Add the last integral to the left:

$$
\frac{5}{4} \int \mathrm{e}^{t} \sin (2 t) d t=-\frac{1}{2} \mathrm{e}^{t} \cos (2 t)+\frac{1}{4} \mathrm{e}^{t} \sin (2 t)
$$

so that:

$$
\int \mathrm{e}^{t} \sin (2 t) d t=-\frac{2}{5} \mathrm{e}^{t} \cos (2 t)+\frac{1}{5} \mathrm{e}^{t} \sin (2 t)+C_{1}
$$

Going back to the differential equation,

$$
\mathrm{e}^{t} y(t)=-2 \mathrm{e}^{t} \cos (2 t)+\mathrm{e}^{t} \sin (2 t)+C_{2}
$$

so that the general solution is:

$$
y(t)=-2 \cos (2 t)+\sin (2 t)+C_{2} \mathrm{e}^{-t}
$$

We see that, as $t \rightarrow \infty, y(t)$ does indeed go to a periodic function.
In problems $13,15,16$, solve the IVP. For these problems, I will leave the details out, but I will give the integrating factor. Be sure to ask in class if you're not sure how to solve them!
4. Problem 13: (You'll need to integrate by parts!)

$$
\begin{gathered}
y^{\prime}-y=2 t \mathrm{e}^{2 t} \quad \mathrm{e}^{\int p(t) d t}=\mathrm{e}^{-t} \\
y(t)=\mathrm{e}^{2 t}(2 t-2)+3 \mathrm{e}^{t}
\end{gathered}
$$

5. Problem 15:

$$
t y^{\prime}+2 y=t^{2}-t+1
$$

Be sure to put in standard form before solving:

$$
y^{\prime}+\frac{2}{t} y=t-1+\frac{1}{t} \quad \mathrm{e}^{\int p(t) d t}=t^{2}
$$

and

$$
y(t)=\frac{1}{4} t^{2}-\frac{1}{3} t+\frac{1}{2}+\frac{1}{12 t^{2}}
$$

6. Problem 16: In this problem, the integrating factor is again t^{2} :

$$
y^{\prime}+\frac{2}{t} \cdot y=\frac{\cos (t)}{t^{2}} \quad \Rightarrow \quad y(t)=\frac{\sin (t)}{t^{2}}
$$

7. Problem 30: Solve the IVP:

$$
y^{\prime}-y=1+3 \sin (t) \quad y(0)=y_{0}
$$

The integrating factor is e^{-t}, so that we get:

$$
\left(y \mathrm{e}^{-t}\right)^{\prime}=\mathrm{e}^{-t}+3 \mathrm{e}^{-t} \sin (t)
$$

Integrate both sides. The term on the far right side of the equation requires integration by parts using a table (differentiate the middle column, antidifferentiate the last column):

$$
\int \mathrm{e}^{-t} \sin (t) d t \Rightarrow \begin{array}{|c|c|c|}
\hline+ & \sin (t) & \mathrm{e}^{-t} \\
- & \cos (t) & -\mathrm{e}^{-t} \\
+ & -\sin (t) & \mathrm{e}^{-t} \\
\hline
\end{array}
$$

so that

$$
\int \mathrm{e}^{-t} \sin (t) d t=-\mathrm{e}^{-t} \cos (t)-\mathrm{e}^{-t} \sin (t)-\int \mathrm{e}^{-t} \sin (t) d t
$$

Add the last integral to both sides and divide:

$$
2 \int \mathrm{e}^{-t} \sin (t) d t=-\mathrm{e}^{-t} \cos (t)-\mathrm{e}^{-t} \sin (t)
$$

Therefore,

$$
\int \mathrm{e}^{-t} \sin (t) d t=-\frac{1}{2} \mathrm{e}^{-t}(\cos (t)+\sin (t))
$$

Going back to the DE, we have (remember to multiply by 3):

$$
y \mathrm{e}^{-t}=-\mathrm{e}^{-t}-\frac{3}{2} \mathrm{e}^{-t}(\cos (t)+\sin (t))+C
$$

so that

$$
y=-1-\frac{3}{2}(\cos (t)+\sin (t))+C \mathrm{e}^{t}
$$

Therefore, the general solution is (using the initial condition):

$$
y(t)=-1-\frac{3}{2}(\cos (t)+\sin (t))+\left(\frac{5}{2}+y_{0}\right) \mathrm{e}^{t}
$$

To keep the solution finite (or bounded) as $t \rightarrow \infty$, we must find y_{0} so that the exponential term drops out- This means that $y_{0}=-5 / 2$.
Problems 34-36: We're going backwards from a desired solution to the differential equation. We notice a couple of things about our previous work. If we want our solution to approach a given function $g(t)$, then we might write the full solution as

$$
y(t)=g(t)+C \mathrm{e}^{-t}
$$

Then, $y^{\prime}=g^{\prime}(t)-C \mathrm{e}^{-t}$, and $y^{\prime}+y=g(t)-g^{\prime}(t)$ is the differential equation.
8. For Problem 34, we want $y(t) \rightarrow 3$ as $t \rightarrow \infty$. Here are two possible ways of proceeding:

- Suppose $y(t)=3+C \mathrm{e}^{-t}$ (so it looks a lot like the solutions we got for the previous HW problems). Then $y^{\prime}=-C \mathrm{e}^{-t}$, and we see that:

$$
y^{\prime}+y=3
$$

(I'll leave the verification to you).

- As another possible approach, we could take:

$$
y(t)=3+\frac{C}{t^{2}}
$$

Now, $y^{\prime}=-2 C / t^{3}$. We see that if we take $t y^{\prime}$ and add it to $2 y$, the terms with C cancel and we're left with 6 . Therefore, the ODE is:

$$
t y^{\prime}+2 y=6
$$

(I'll leave the verification to you).
9. Problem 35 is similar. There are many ways of constructing such a differential equationIt's easiest to start with a desired solution.
If we would like $y(t)=3-t+C \mathrm{e}^{-3 t}$, then $y^{\prime}=-1-3 C \mathrm{e}^{-3 t}$, and:

$$
y^{\prime}+3 y=8-3 t
$$

