
Solutions: Section 2.2

• 2.2, 1: Give the general solution: y′ = x2/y

y dy = x2 dx ⇒ 1

2
y2 =

1

3
x3 + C

• 2.2, 3: Give the general solution to y′ + y2 sin(x) = 0.

First write in standard form:

dy

dx
= −y2 sin(x) ⇒ − 1

y2
dy = sin(x) dx

Before going any further, notice that we have divided by y, so we need to say that this
is value as long as y(x) 6= 0. In fact, we see that the function y(x) = 0 IS a possible
solution.

With that restriction in mind, we proceed by integrating both sides to get:

1

y
= − cos(x) + C ⇒ y =

1

C − cos(x)

Note: Don’t forget to add the “C” at the right time- Right after integration.

• 2.2, 5 Hint: To integrate cos2(x), use the identity cos2(x) =
1 + cos(2x)

2

• 2.2, 7: Give the general solution:

dy

dx
=
x− e−x

y + ey

First, note that dy/dx exists as long as y 6= −ey. With that requirement, we can
proceed:

(y + ey) dy =
(
x+ e−x

)
dx

Integrating, we get:
1

2
y2 + ey =

1

2
x2 − e−x + C

In this case, we cannot algebraically isolate y, so we’ll leave our answer in this form
(we could multiply by two).

• 2.2, 9: Let y′ = (1− 2x)y2, y(0) = −1/6.

First, we find the solution. Before we divide by y, we should make the note that y 6= 0.
We also see that y(x) = 0 is a possible solution (although NOT a solution that satisfies
the initial condition).

Now solve: ∫
y−2 dy =

∫
(1− 2x) dx ⇒ −y−1 = x− x2 + C

1



Figure 1: Graph for Exercise 9. Is the solution to the IVP represented by the black curve?

Solve for the initial value:
6 = 0 + C ⇒ C = 6

The solution is (solve for y):

y(x) =
1

x2 − x− 6
=

1

(x− 3)(x+ 2)

The solution is valid only on −2 < x < 3, and we could plot this by hand, but for the
plot, we can use Maple:

DE09:=diff(y(x),x)=(1-2*x)*(y(x))^2;

Y1:=dsolve( { DE09, y(0)=-1/6 },y(x));

with(plots):

plot(rhs(Y1),x=-5..5,y=-3..3); #rhs means right hand side (of Y1)

NOTE: Here’s an important question to think about. When we plot the graph of the
solution, Maple includes the whole curve (minus the asymptotes at −2 and 3. Is this
entire graph the solution?

• 2.2, 11: x dx+ ye−xdy = 0, y(0) = 1

To solve, first get into a standard form, multiplying by ex, and integrate (integration
by parts for the right hand side):∫

y dy = −
∫
xex dx ⇒ 1

2
y2 = −xex + ex + C

2



We could solve for the constant before isolating y:

1

2
= 0 + 1 + C C = −1

2

Now solve for y:

y2 = 2ex(x− 1)− 1

2

and take the positive root, since y(0) = +1.

y =
√

2ex(1− x)− 1

The solution exists as long as:

2ex(1− x)− 1 ≥ 0

We use Maple to solve where this is equal to zero; from that, we see that −1.678 ≤
x ≤ 0.768

Here is the Maple code:

DE11:=x+y(x)*exp(-x)*diff(y(x),x)=0;

Y1:=dsolve({DE11,y(0)=1},y(x));

plot(rhs(Y1),x=-2..2);

evalf(solve(rhs(Y1)=0,x));

• 2.2, 16:
dy

dx
=
x(x2 + 1)

4y3
y(0) = − 1√

2

First, we notice that y 6= 0. Now separate the variables and integrate:

y4 =
1

4
x4 +

1

2
x2 + C

This might be a good time to solve for C: C = 1/4, so:

y4 =
1

4
x4 +

1

2
x2 +

1

4

The right side of the equation seems to be a nice form. Try some algebra to simplify
it:

1

4

(
x4 + 2x2 + 1

)
=

1

4
(x2 + 1)2

Now we can write the solution:

y4 =
1

4
(x2 + 1)2 ⇒ y = − 1√

2

√
x2 + 1

This solution exists for all x, and the plot can be done in Maple:
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DE14:=diff(y(x),x)=(x*(x^2+1))/(4*(y(x))^3);

Y1:=dsolve({DE14,y(0)=-1/sqrt(2)},y(x));

plot(rhs(Y1),x=-4..4);

• 2.2, 20: y2
√

1− x2dy = sin−1(x) dx with y(0) = 1.

To put into standard form, we’ll be dividing so that x 6= ±1. In that case,∫
y2 dy =

∫ sin−1(x)√
1− x2

dx

The right side of the equation is all set up for a u, du substitution, with u = sin−1(x),
du = 1/

√
x2 − 1 dx:

1

3
y3 =

1

2
(arcsin(x))2 + C

Solve for C, 1
3

= 0 + C so that:

1

3
y3 =

1

2
arcsin2(x) +

1

3

Now,

y(x) =
3

√
3

2
arcsin2(x) + 1

The domain of the inverse sine is: −1 ≤ x ≤ 1. However, we needed to exclude the
endpoints. Therefore, the domain is:

−1 < x < 1

For Problems 31 and 35: We have a new class of differential equation called ho-
mogeneous. The idea is that the first order DE:

y′ = f(x, y) = F (y/x)
.
= F (v)

Here, we substitute v = y/x and see what we get- The hard part is to make the
substitution for y′- Notice that vx = y, so y′ = v′x+ v. Substituting, we have:

y′ = F (y/x) ⇒ v′x+ v = F (v)

which is always a separable equation.

• Problem 31:
dy

dx
=
x2 + xy + y2

x2
= 1 +

y

x
+
(
y

x

)2

Make the substitutions: v = y/x and y′ = v′x+ v:

v′x+ v = 1 + v + v2 ⇒ x
dv

dx
= 1 + v2 ⇒ dv

1 + v2
=
dx

x
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Integrate both sides to get tan−1(v) = ln |x|+ C, and now we’ll see if we can solve for
y:

tan−1(y/x) = ln |x|+ C ⇒ y = x tan(ln |x|+ C)

We have to be a bit careful about the domain for this function- Recall that y = tan(x)
is invertible only if we restrict −π/2 < x < π/2 (and y ∈ IR). In this case, that means

−π
2
< ln |x|+ C <

π

2
⇒ −C − π

2
< ln |x| < −C +

π

2

Exponentiating,
e−ce−π/2 < |x| < e−ceπ/2

We might go ahead and drop the absolute value at this point.

• Problem 35: Similar to 31,

dy

dx
=
x+ 3y

x− y
=

1 + 3(y/x)

1− (y/x)

Subsitute again, v = y/x, or y = xv, so y′ = v′x+ v:

v′x+ v =
1 + 3v

1− v
⇒ v′x =

−v(1− v)

1− v
+

1 + 3v

1− v
=
v2 + 2v + 1

1− v
=

(1 + v)2

1− v

Now, let u = 1 + v (so v = u− 1), and du = dv:∫ 1− v
(1 + v)2

dv =
∫ dx

x
⇒

∫ 2− u
u2

= ln |x|+C ⇒ −2(1+v)−1−ln |1+v| = ln |x|+C

Backsubstitute for v (and simplify):

−2x

x+ y
− (ln |x+ y| − ln |x|) = ln |x|+ C ⇒ 2x

x+ y
+ ln |x+ y| = C2

This solution is valid as long as y 6= −x. Is the function y = −x a solution as well?
Substitute into the DE, with y′ = −1, we see that:

x+ 3y

x− y
=
−2x

2x
= −1

so indeed it is.
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