Solutions: Section 2.2

- 2.2, 1: Give the general solution: $y^{\prime}=x^{2} / y$

$$
y d y=x^{2} d x \quad \Rightarrow \quad \frac{1}{2} y^{2}=\frac{1}{3} x^{3}+C
$$

- 2.2, 3: Give the general solution to $y^{\prime}+y^{2} \sin (x)=0$.

First write in standard form:

$$
\frac{d y}{d x}=-y^{2} \sin (x) \quad \Rightarrow \quad-\frac{1}{y^{2}} d y=\sin (x) d x
$$

Before going any further, notice that we have divided by y, so we need to say that this is value as long as $y(x) \neq 0$. In fact, we see that the function $y(x)=0$ IS a possible solution.

With that restriction in mind, we proceed by integrating both sides to get:

$$
\frac{1}{y}=-\cos (x)+C \quad \Rightarrow \quad y=\frac{1}{C-\cos (x)}
$$

Note: Don't forget to add the "C" at the right time- Right after integration.

- 2.2, 5 Hint: To integrate $\cos ^{2}(x)$, use the identity $\cos ^{2}(x)=\frac{1+\cos (2 x)}{2}$
- 2.2, 7: Give the general solution:

$$
\frac{d y}{d x}=\frac{x-\mathrm{e}^{-x}}{y+\mathrm{e}^{y}}
$$

First, note that $d y / d x$ exists as long as $y \neq-\mathrm{e}^{y}$. With that requirement, we can proceed:

$$
\left(y+\mathrm{e}^{y}\right) d y=\left(x+\mathrm{e}^{-x}\right) d x
$$

Integrating, we get:

$$
\frac{1}{2} y^{2}+\mathrm{e}^{y}=\frac{1}{2} x^{2}-\mathrm{e}^{-x}+C
$$

In this case, we cannot algebraically isolate y, so we'll leave our answer in this form (we could multiply by two).

- 2.2, 9: Let $y^{\prime}=(1-2 x) y^{2}, \quad y(0)=-1 / 6$.

First, we find the solution. Before we divide by y, we should make the note that $y \neq 0$. We also see that $y(x)=0$ is a possible solution (although NOT a solution that satisfies the initial condition).
Now solve:

$$
\int y^{-2} d y=\int(1-2 x) d x \quad \Rightarrow \quad-y^{-1}=x-x^{2}+C
$$

Figure 1: Graph for Exercise 9. Is the solution to the IVP represented by the black curve?

Solve for the initial value:

$$
6=0+C \Rightarrow C=6
$$

The solution is (solve for y):

$$
y(x)=\frac{1}{x^{2}-x-6}=\frac{1}{(x-3)(x+2)}
$$

The solution is valid only on $-2<x<3$, and we could plot this by hand, but for the plot, we can use Maple:

```
DE09:= diff(y(x),x)=(1-2*x)*(y(x))^2;
Y1:=dsolve( { DE09, y(0)=-1/6 },y(x));
with(plots):
plot(rhs(Y1),x=-5..5,y=-3..3); #rhs means right hand side (of Y1)
```

NOTE: Here's an important question to think about. When we plot the graph of the solution, Maple includes the whole curve (minus the asymptotes at -2 and 3. Is this entire graph the solution?

- 2.2, 11: $x d x+y \mathrm{e}^{-x} d y=0, \quad y(0)=1$

To solve, first get into a standard form, multiplying by e^{x}, and integrate (integration by parts for the right hand side):

$$
\int y d y=-\int x \mathrm{e}^{x} d x \quad \Rightarrow \quad \frac{1}{2} y^{2}=-x \mathrm{e}^{x}+\mathrm{e}^{x}+C
$$

We could solve for the constant before isolating y :

$$
\frac{1}{2}=0+1+C \quad C=-\frac{1}{2}
$$

Now solve for y :

$$
y^{2}=2 \mathrm{e}^{x}(x-1)-\frac{1}{2}
$$

and take the positive root, since $y(0)=+1$.

$$
y=\sqrt{2 \mathrm{e}^{x}(1-x)-1}
$$

The solution exists as long as:

$$
2 \mathrm{e}^{x}(1-x)-1 \geq 0
$$

We use Maple to solve where this is equal to zero; from that, we see that $-1.678 \leq$ $x \leq 0.768$

Here is the Maple code:

```
DE11:=x+y(x)*exp(-x)*diff(y(x),x)=0;
Y1:=dsolve({DE11,y(0)=1},y(x));
plot(rhs(Y1),x=-2..2);
evalf(solve(rhs(Y1)=0,x));
```

- $2.2,16$:

$$
\frac{d y}{d x}=\frac{x\left(x^{2}+1\right)}{4 y^{3}} \quad y(0)=-\frac{1}{\sqrt{2}}
$$

First, we notice that $y \neq 0$. Now separate the variables and integrate:

$$
y^{4}=\frac{1}{4} x^{4}+\frac{1}{2} x^{2}+C
$$

This might be a good time to solve for C : $C=1 / 4$, so:

$$
y^{4}=\frac{1}{4} x^{4}+\frac{1}{2} x^{2}+\frac{1}{4}
$$

The right side of the equation seems to be a nice form. Try some algebra to simplify it:

$$
\frac{1}{4}\left(x^{4}+2 x^{2}+1\right)=\frac{1}{4}\left(x^{2}+1\right)^{2}
$$

Now we can write the solution:

$$
y^{4}=\frac{1}{4}\left(x^{2}+1\right)^{2} \quad \Rightarrow \quad y=-\frac{1}{\sqrt{2}} \sqrt{x^{2}+1}
$$

This solution exists for all x, and the plot can be done in Maple:

```
DE14:= diff(y(x),x)=(x*(x^2+1))/(4*(y(x))^3);
Y1:=dsolve({DE14,y(0)=-1/sqrt(2)},y(x));
plot(rhs(Y1),x=-4..4);
```

- 2.2, 20: $y^{2} \sqrt{1-x^{2}} d y=\sin ^{-1}(x) d x$ with $y(0)=1$.

To put into standard form, we'll be dividing so that $x \neq \pm 1$. In that case,

$$
\int y^{2} d y=\int \frac{\sin ^{-1}(x)}{\sqrt{1-x^{2}}} d x
$$

The right side of the equation is all set up for a $u, d u$ substitution, with $u=\sin ^{-1}(x)$, $d u=1 / \sqrt{x^{2}-1} d x$:

$$
\frac{1}{3} y^{3}=\frac{1}{2}(\arcsin (x))^{2}+C
$$

Solve for $C, \frac{1}{3}=0+C$ so that:

$$
\frac{1}{3} y^{3}=\frac{1}{2} \arcsin ^{2}(x)+\frac{1}{3}
$$

Now,

$$
y(x)=\sqrt[3]{\frac{3}{2} \arcsin ^{2}(x)+1}
$$

The domain of the inverse sine is: $-1 \leq x \leq 1$. However, we needed to exclude the endpoints. Therefore, the domain is:

$$
-1<x<1
$$

For Problems 31 and 35: We have a new class of differential equation called homogeneous. The idea is that the first order DE:

$$
y^{\prime}=f(x, y)=F(y / x) \doteq F(v)
$$

Here, we substitute $v=y / x$ and see what we get- The hard part is to make the substitution for y^{\prime} - Notice that $v x=y$, so $y^{\prime}=v^{\prime} x+v$. Substituting, we have:

$$
y^{\prime}=F(y / x) \quad \Rightarrow \quad v^{\prime} x+v=F(v)
$$

which is always a separable equation.

- Problem 31:

$$
\frac{d y}{d x}=\frac{x^{2}+x y+y^{2}}{x^{2}}=1+\frac{y}{x}+\left(\frac{y}{x}\right)^{2}
$$

Make the substitutions: $v=y / x$ and $y^{\prime}=v^{\prime} x+v$:

$$
v^{\prime} x+v=1+v+v^{2} \quad \Rightarrow \quad x \frac{d v}{d x}=1+v^{2} \quad \Rightarrow \quad \frac{d v}{1+v^{2}}=\frac{d x}{x}
$$

Integrate both sides to get $\tan ^{-1}(v)=\ln |x|+C$, and now we'll see if we can solve for y :

$$
\tan ^{-1}(y / x)=\ln |x|+C \quad \Rightarrow \quad y=x \tan (\ln |x|+C)
$$

We have to be a bit careful about the domain for this function- Recall that $y=\tan (x)$ is invertible only if we restrict $-\pi / 2<x<\pi / 2$ (and $y \in \mathbb{R}$). In this case, that means

$$
-\frac{\pi}{2}<\ln |x|+C<\frac{\pi}{2} \quad \Rightarrow \quad-C-\frac{\pi}{2}<\ln |x|<-C+\frac{\pi}{2}
$$

Exponentiating,

$$
\mathrm{e}^{-c} \mathrm{e}^{-\pi / 2}<|x|<\mathrm{e}^{-c} \mathrm{e}^{\pi / 2}
$$

We might go ahead and drop the absolute value at this point.

- Problem 35: Similar to 31,

$$
\frac{d y}{d x}=\frac{x+3 y}{x-y}=\frac{1+3(y / x)}{1-(y / x)}
$$

Subsitute again, $v=y / x$, or $y=x v$, so $y^{\prime}=v^{\prime} x+v$:

$$
v^{\prime} x+v=\frac{1+3 v}{1-v} \quad \Rightarrow \quad v^{\prime} x=\frac{-v(1-v)}{1-v}+\frac{1+3 v}{1-v}=\frac{v^{2}+2 v+1}{1-v}=\frac{(1+v)^{2}}{1-v}
$$

Now, let $u=1+v$ (so $v=u-1$), and $d u=d v$:
$\int \frac{1-v}{(1+v)^{2}} d v=\int \frac{d x}{x} \Rightarrow \int \frac{2-u}{u^{2}}=\ln |x|+C \quad \Rightarrow \quad-2(1+v)^{-1}-\ln |1+v|=\ln |x|+C$
Backsubstitute for v (and simplify):

$$
\frac{-2 x}{x+y}-(\ln |x+y|-\ln |x|)=\ln |x|+C \quad \Rightarrow \quad \frac{2 x}{x+y}+\ln |x+y|=C_{2}
$$

This solution is valid as long as $y \neq-x$. Is the function $y=-x$ a solution as well? Substitute into the DE, with $y^{\prime}=-1$, we see that:

$$
\frac{x+3 y}{x-y}=\frac{-2 x}{2 x}=-1
$$

so indeed it is.

