Selected solutions, 2.6

NOTE: In Problems 1 and 3, we show two different ways of finding the underlying function f. Either way is fine.

1. Take $M=2 x+3$ and $N=2 y-2$. Then $M_{y}=N_{x}=0$, and to find the solution, we can antidifferentiate M :

$$
f(x, y)=\int M d x=x^{2}+3 x+h_{1}(y)
$$

We can differentiate this to see if we get $N: f_{y}=h_{1}^{\prime}(y)=2 y-2$. Therefore, $h_{1}(y)=$ $y^{2}-2 y$. Put it all together to get the solution:

$$
x^{2}+3 x+y^{2}-2 y=C
$$

3. $\left(3 x^{2}-2 x y+2\right) d x+\left(6 y^{2}-x^{2}+3\right) d y=0$

SOLUTION: If this is exact, this is of the form $f_{x} d x+f_{y} d y$ for some f. We use the test $\left(M_{y}=N_{x}\right)$:

$$
M_{y}=-2 x \quad N_{x}=-2 x
$$

Now we try to reconstruct f. One way to do it is to integrate twice and compare:

$$
f_{x}=3 x^{2}-2 x y+2 \quad \Rightarrow \quad f(x, y)=x^{3}-x^{2} y+2 x+h_{1}(y)
$$

Using the other function,

$$
f_{y}=6 y^{2}-x^{2}+3 \quad \Rightarrow \quad f(x, y)=2 y^{3}-x^{2} y+3 y+h_{2}(x)
$$

Now compare the two expressions to see that $f(x, y)=x^{3}+2 y^{3}-x^{2} y+2 x+3 y$ and the general solution is:

$$
x^{3}+2 y^{3}-x^{2} y+2 x+3 y=C
$$

4. Solving it as written, we should get $x^{2} y^{2}+2 x y=C$, but did you notice that you could factor $2 x y+2$ out of M and N (if not, that's OK). In that case, the equation becomes simpler- In fact, we end up $x y=C$ as the solution.
5. (We started it in class)

$$
(y / x+6 x) d x+(\ln (x)-2) d y=0 \quad x>0
$$

Checking, we see that $M_{y}=1 / x=N_{x}$, so the DE is exact. Integrating M first gives:

$$
f(x, y)=y \ln (x)+3 x^{2}+G_{1}(y)
$$

Integrating N gives:

$$
f(x, y)=y \ln (x)-2 y+G_{2}(x)
$$

Comparing these, we see that $f(x, y)=y \ln (x)+3 x^{2}-2 y$ (NOTE: We are NOT adding these together; we are comparing them). The overall general solution is then

$$
y \ln (x)+3 x^{2}-2 y=C
$$

13. You should get that the general solution is

$$
x^{2}-x y+y^{2}=C
$$

and that the initial condition yields $c=7$. In this case, one could solve the specific solution for y by completing the square in y, or you could use the quadratic formula in y. Algebraically, this gets a little messy, but here it is:

$$
\begin{gathered}
y^{2}-x y=7-x^{2} \quad \Rightarrow \quad y^{2}-x y+\frac{x^{2}}{4}=7-\frac{3 x^{2}}{4}= \\
\left(y-\frac{x}{2}\right)^{2}=\frac{28-3 x^{2}}{4} \quad \Rightarrow \quad y=\frac{x+\sqrt{28-3 x^{2}}}{2}
\end{gathered}
$$

(Positive root to match the IC) so the solution is valid as long as $3 x^{2} \leq 28$.
17. There is a small (but important) typo. The function ψ (the symbol ψ is read like the beginning of "psychology", psi):

$$
\psi(x, y)=\int_{x_{0}}^{x} M\left(s, y_{0}\right) d s+\int_{y_{0}}^{y} N\left(x_{0}, t\right) d t
$$

Having said that, I believe this question is suggesting something that is incorrect. If you have the time and interest, you might try working out a specific example to see what happens.
18. In the case that M is a function of x alone, and N is a function of y alone, then $M_{y}=N_{x}=0$.
19. Multiply by the integrating factor so that the new DE is exact:

$$
\frac{x^{2} y^{3}}{x y^{3}}+\frac{x\left(1+y^{2}\right)}{x y^{3}} y^{\prime}=0 \quad \Rightarrow \quad x+\frac{1+y^{2}}{y^{3}} y^{\prime}=0
$$

This is like Exercise 18- This is a separable DE, but we'll solve it as an exact equation:

$$
\begin{array}{r}
M(x, y)=x \quad \Rightarrow \quad f(x, y)=\frac{1}{2} x^{2}+h_{1}(y) \\
N(x, y)=\frac{1}{y^{3}}+\frac{1}{y} \quad \Rightarrow \quad f(x, y)=-\frac{1}{2 y^{2}}+\ln |y|+h_{2}(x)
\end{array}
$$

Put these together:

$$
\frac{1}{2} x^{2}-\frac{1}{2 y^{2}}+\ln |y|=C
$$

(The text multiplied everything by 2)
22. With the given integrating factor, we write:

$$
(x+2) x \mathrm{e}^{x} \sin (y)+x^{2} \mathrm{e}^{x} \cos (y) y^{\prime}=0
$$

Now this is exact, since $M_{y}=\left(x^{2}+2 x\right) \mathrm{e}^{x} \cos (y)$, and so is N_{x} (remember to use the product rule). Now to integrate, the author has been kind to us- Remember, we can
choose which integral to do- Either M with respect to x (a little messy) or N with respect to y (easy!):

$$
f(x, y)=\int N d y=x^{2} \mathrm{e}^{x} \sin (y)+h_{1}(x)
$$

and now determine if there is a function $h_{1}(x)$ by comparing f_{x} to M :

$$
f_{x}=\sin (y)\left(2 x \mathrm{e}^{x}+x^{2} \mathrm{e}^{x}\right)+h_{1}^{\prime}(x) \quad \Rightarrow \quad h_{1}(x)=0
$$

and the solution is:

$$
x^{2} \mathrm{e}^{x} \sin (y)=C
$$

