Selected Solutions, Section 3.1

For Exercises 1 and 3, we practice using the ansatz and characteristic equation to solve the ODE. Here is \#3 and \#10:
3. $6 y^{\prime \prime}-y^{\prime}-y=0$

SOLUTION: Using the ansatz $y=\mathrm{e}^{r t}$, we obtain the characteristic equation, which factors (you could use the quadratic formula, but that does take extra time):

$$
6 r^{2}-r-1=0 \quad \Rightarrow \quad(2 r-1)(3 r+1)=0
$$

so we have two distince real solutions, $r=1 / 2,-1 / 3$. In that case, the general solution is given by:

$$
y=C_{1} \mathrm{e}^{t / 2}+C_{2} \mathrm{e}^{-t / 3}
$$

10. $y^{\prime \prime}+4 y^{\prime}+3 y=0, y(0)=2, y^{\prime}(0)=-1$

SOLUTION: This problem adds the initial conditions, so we'll need to solve for C_{1}, C_{2} after we get the general solution. Here we go!
The characteristic equation is given below, which factors:

$$
r^{2}+4 r+3=0 \quad \Rightarrow \quad(r+1)(r+3)=0 \quad \Rightarrow \quad r=-1,-3
$$

The general solution is

$$
y(t)=C_{1} \mathrm{e}^{-t}+C_{2} \mathrm{e}^{-3 t}
$$

Substitute the initial conditions to solve for C_{1}, C_{2} :

Sometimes it is convenient to use Cramer's Rule to solve this. The determinant of the coefficient matrix is $-3+1=-2$, so we have

$$
C_{1}=\frac{\left|\begin{array}{rr}
2 & 1 \\
-1 & -3
\end{array}\right|}{-2}=\frac{5}{2} \quad C_{1}=\frac{\left|\begin{array}{rr}
1 & 2 \\
-1 & -1
\end{array}\right|}{-2}=-\frac{1}{2}
$$

Additionally, the solution:

$$
y(t)=\frac{5}{2} \mathrm{e}^{-t}-\frac{1}{2} \mathrm{e}^{-3 t}
$$

will tend to zero as $t \rightarrow \infty$.
15-16. Very similar to 10 .
17-18. The idea here is to go backwards from the characteristic equation to the differential equation:

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 \quad \Leftrightarrow \quad a r^{2}+b r+c=0
$$

For 17, the characteristic equation would be $(r-2)(r+3)=0$, or $r^{2}+r-6=0$ (then get the DE). For $18,(r+1 / 2)(r+2)=0$ or multiply both sides by 2 to get rid of the fraction: $(2 r+1)(r+2)=0$ (expand it out to get the coefficients for the DE).
20. First solve the IVP:

$$
2 r^{2}-3 r+1=0 \quad \Rightarrow \quad(2 r-1)(r-1)=0 \quad \Rightarrow \quad r=1, \frac{1}{2}
$$

The general solution is: $y(t)=C_{1} \mathrm{e}^{t / 2}+C_{2} \mathrm{e}^{t}$. Substituting the initial conditions, solve using elimination or Cramer's Rule:

$$
\begin{aligned}
C_{1}+C_{2} & =2 \\
\frac{1}{2} C_{1}+C_{2} & =\frac{1}{2}
\end{aligned} \quad \Rightarrow \quad C_{1}=3 \quad C_{2}=-1
$$

Therefore, $y(t)=3 \mathrm{e}^{t / 2}-\mathrm{e}^{t}$.
Now, we can find the maximum by looking at the derivative and setting it to zero:

$$
y^{\prime}=\frac{3}{2} \mathrm{e}^{t / 2}-\mathrm{e}^{t}=0 \Rightarrow \frac{3}{2}=\mathrm{e}^{t / 2} \quad \Rightarrow \quad \ln \left(\frac{3}{2}\right)=\frac{t}{2}
$$

Therefore, $t=2 \ln (3 / 2) \approx 0.8109$. We can check the sign of the derivative to see if this is a maximum (the first derivative test):

$$
\begin{array}{ccc}
y^{\prime} & + & - \\
\hline & t<2 \ln (3 / 2) & t>2 \ln (3 / 2)
\end{array}
$$

Therefore, we have a global (or absolute) maximum at $t=2 \ln (3 / 2)$.
Furthermore, we can find where the solution is zero by setting $y(t)=0$ and solving for t - We get $t=2 \ln (3)$.
21. Go to the characteristic equation first to get the general solution:

$$
r^{2}-r-2=0 \quad \Rightarrow \quad(r-2)(r+1)=0 \quad r=2,-1
$$

Therefore, the general solution is:

$$
y(t)=C_{1} \mathrm{e}^{2 t}+C_{2} \mathrm{e}^{-t}
$$

Solve using the ICs: $y(0)=\alpha$ and $y^{\prime}(0)=2$, we have the following system (solve it using Cramer's Rule):

$$
\begin{aligned}
C_{1}+C_{2} & =\alpha \\
2 C_{1}-C_{2} & =2
\end{aligned} \quad \Rightarrow \quad C_{1}=\frac{\alpha+2}{3} \quad C_{2}=\frac{2 \alpha-2}{3}
$$

Now, if C_{1} is anything but zero, over time, the term $\mathrm{e}^{2 t}$ will take $y(t)$ to either $\pm \infty$ (depending on the sign of C_{1}), and so for the solution to approach either zero or stay bounded, the constant C_{1} must be zero- In terms of α, we must have $\alpha=-2$.
22. This one is very similar to 21 .
23.

$$
y^{\prime \prime}-(2 \alpha-1) y^{\prime}+\alpha(\alpha-1)=0
$$

Before going farther, we note that given $a y^{\prime \prime}+b y^{\prime}+c y=0$, the solution to the characteristic equation is given by the quadratic formula,

$$
r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

In this particular case,

$$
b^{2}-4 a c=(2 \alpha-1)^{2}-4 \alpha(\alpha-1)=1
$$

The solutions to the characteristic equation are thus

$$
r=\frac{(2 \alpha-1) \pm 1}{2} \Rightarrow r=\alpha, \alpha-1
$$

We have three cases to consider when looking at whether the solutions are bounded:

- For all solutions to go to zero as $t \rightarrow \infty$ (no matter the choice of initial conditions), both values of r must be negative:

$$
\alpha<0 \quad \text { and } \quad \alpha<1
$$

or $\alpha<0$.

- If one value of r is positive and one value of r is negative, then some of the solutions will go to zero, some become unbounded (that is, we can find initial conditions that will keep the solution bounded, and some that will not).
- To guarantee that all solutions become unbounded (regardless of initial condition), both values of r have to be positive:

$$
\alpha>0 \quad \text { and } \alpha>1
$$

or, $\alpha>1$.

