Trigonometry Review: Cosine Sums

Recall the cosine sum formula:

$$
\cos (x-y)=\cos (x) \cos (y)+\sin (x) \sin (y)
$$

Using this, we see that:

$$
(R \cos (\delta)) \cos (\omega t)+(R \sin (\delta)) \sin (\omega t)=R \cos (\omega t-\delta)
$$

This implies that we can write the following sum as a single cosine function:

$$
A \cos (\omega t)+B \sin (\omega t)=R \cos (\omega t-\delta) \quad \Leftrightarrow \quad A=R \cos (\delta) \quad B=R \sin (\delta)
$$

or, given A, B then:

$$
R=\sqrt{A^{2}+B^{2}} \quad \text { and } \quad \tan (\delta)=\frac{B}{A}
$$

These computations will be useful for us in analyzing the solution to the DE when $r=\alpha \pm \beta i$, since the general form of the solution is:

$$
\mathrm{e}^{\alpha t}\left(C_{1} \cos (\beta t)+C_{2} \sin (\beta t)\right)=R \mathrm{e}^{\alpha t} \cos (\beta t-\delta)
$$

Examples

1. Write the solution to $y^{\prime \prime}+2 y^{\prime}+6 y=0, y(0)=1, y^{\prime}(0)=1$ in the form $R \mathrm{e}^{\alpha t} \cos (\beta t-\delta)$: SOLUTION: Solve the characteristic equation:

$$
r^{2}+2 r+6=0 \quad \Rightarrow \quad\left(r^{2}+2 r+1\right)+5=0 \quad \Rightarrow \quad r=-1 \pm \sqrt{5} i
$$

The general form of the solution is:

$$
y(t)=\mathrm{e}^{-t}\left(C_{1} \cos (\sqrt{5} t)+C_{2} \sin (\sqrt{5} t)\right)
$$

Solving for the initial conditions (a bit of algebra involved here!):

$$
C_{1}=1 \quad C_{2}=\frac{2}{\sqrt{5}}
$$

Therefore,

$$
R=\sqrt{1+\frac{4}{5}}=\frac{3}{\sqrt{5}}
$$

And

$$
\delta=\tan ^{-1}(2 / \sqrt{5}) \approx 0.7297
$$

Therefore,

$$
y(t)=\frac{3}{\sqrt{5}} \mathrm{e}^{-t} \cos (\sqrt{5} t-0.7297)
$$

Now it is easy to analyze the solution as a periodic function being modified (dampened by the exponential). The periodic function has a period of $2 \pi / \sqrt{5}$ and an amplitude of $3 / \sqrt{5}$.
2. Example: Same instructions as the previous problem, with $y^{\prime \prime}+192 y=0, y(0)=1 / 6$ and $y^{\prime}(0)=-1$:

$$
r^{2}+192=0 \quad \Rightarrow \quad r= \pm 8 \sqrt{3} i
$$

The general form of the solution is (with $\alpha=0$ in the exponential):

$$
y(t)=C_{1} \cos (8 \sqrt{3} t)+C_{2} \sin (8 \sqrt{3} t)
$$

Using the initial conditions, we see that:

$$
C_{1}=1 / 6 \quad C_{2}=-\frac{1}{8 \sqrt{3}}
$$

so that

$$
y(t)=\frac{1}{6} \cos (8 \sqrt{3} t)-\frac{1}{8 \sqrt{3}} \sin (8 \sqrt{3} t)
$$

Rewriting this as a single cosine function,

$$
R=\sqrt{\frac{1}{36}+\frac{1}{192}} \approx 0.186
$$

and

$$
\tan (\delta)=-\frac{\sqrt{3}}{4}
$$

There are two solutions to this- in Quadrant II or Quadrant IV. Since $C_{1}=R \cos (\delta)>0$ and $C_{2}=R \sin (\delta)<0$, take the one in the fourth quadrant (returned by the calculator):

$$
\delta \approx-0.40864
$$

Exercises

1. Write the expression $3 \cos (5 t)-2 \sin (5 t)$ in the form $R \cos (\omega t-\delta)$.
2. Write the expression $-\cos (2 t)+\sin (2 t)$ in the form $R \cos (\omega t-\delta)$.
3. Write the expression $-\cos (t)-3 \sin (t)$ in the form $R \cos (\omega t-\delta)$.
4. Write the expression $\mathrm{e}^{-t} \cos (2 t)+2 \mathrm{e}^{-t} \sin (2 t)$ in the form $R \mathrm{e}^{\alpha t} \cos (\omega t-\delta)$, then sketch its graph.
5. Given $y^{\prime \prime}+64 y=0, y(0)=-1, y^{\prime}(0)=-1$, find the solution, its amplitude, period and phase shift.
6. Given the general equation: $m y^{\prime \prime}+\gamma y=0$ with m, γ positive real numbers, find the natural frequency (a.k.a. circular frequency) of the solution.
