
Selected Solutions, Section 5.1

In problems 1-14 even, use the Ratio Test to find the radius of convergence.

6. Use the Ratio Test:

lim
n→∞

|x− x0|n+1

n + 1
· n

|x− x0|n
= |x− x0| lim

n→∞

(
n

n + 1

)
= |x− x0|

The series converges absolutely if |x − x0| < 1, and diverges if |x − x0| > 1, so the
radius is 1.

8. Use the Ratio Test:
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Do you recall the technique where we exponentiate to use L’Hospital’s rule?(
n

n + 1

)n

= en ln( n
n+1)

so now we take the limit of the exponent:
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which is of the form 0/0. Continue with L’Hospital:
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n→∞

−n
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= −1

Therefore,

lim
n→∞

(
n

n + 1

)n

= lim
n→∞

en ln( n
n+1) = e−1

And the ratio test:
|x|
e

< 1 ⇒ |x| < e

12. Actually, this is kind of a “trick question”, although the usual procedure still works:

f(x) = x2 ⇒ f(−1) = 1

f ′(x) = 2x ⇒ f ′(−1) = −2

f ′′(x) = 2 ⇒ f ′′(−1) = 2



Therefore,

x2 = 1− 2(x + 1) +
2

2!
(x + 1)2 = 1− 2(x + 1) + (x + 1)2

(Notice that if you expand and simplify this, you get x2 back.)

This is not an infinite series; no matter what x is, you can always add those three
terms together: The radius of convergence is ∞.

14. At issue here is to find a pattern in the derivatives, so we can write the general form
for the nth derivative.

n = 0 f(x) = (1 + x)−1 f(0) = 1
n = 1 f ′(x) = −(1 + x)−2 f ′(0) = −1
n = 2 f ′′(x) = (−1)(−2)(1 + x)−3 f ′′(0) = 2
n = 3 f ′′′(x) = (−1)(−2)(−3)(1 + x)−4 f ′′′(0) = −3!

From this we see that:
f (n)(0) = (−1)nn!

The Taylor series (actually, the Maclaurin series) is:

1

1 + x
=
∞∑
n=0

(−1)nn!

n!
xn =

∞∑
n=0

(−x)n

and this converges if |x| < 1 (its an alternating geometric series).

Alternatively, we could see this directly using the sum of the geometric series:

∞∑
n=0

(−x)n =
1

1− (−x)
=

1

1 + x

18. Given that

y =
∞∑
n=0

anx
n

Compute y′ and y′′ by writing out the first four terms of each to get the general term.
Show that, if y′′ = y, then the coefficients a0 and a1 are arbitrary, and show the given
recursion relation.

y = a0 + a1x + a2x
2 + a3xx

3 + . . . =
∞∑
n=0

anx
n

y′ = a1 + 2a2x + 3a3x
2 + 4a4x

3 + . . . =
∞∑
n=0

(n + 1)an+1x
n

y′′ = 2a2 + 3 · 2a3x + 4 · 3a4x2 + 5 · 4a5x3 + . . . =
∞∑
n=0

(n + 2)(n + 1)an+2x
n



If y′′ = y, then the coefficients must match up, power by power:

a0 = 2a2 a1 = 6a3 a2 = 12a4 . . . an = (n + 2)(n + 1)an+2

Problems 19-23 are some symbolic manipulation problems.

19. Rewrite the left side equation so that the powers of x match up.

20. Much the same. In this problem, we see that the first sum starts with a constant term,
the second sum starts with x1, and so does the sum on the left. Therefore, we would
rewrite each sum to start with x1 power:

∞∑
k=1

ak+1x
k = a1 +

∞∑
n=1

an+1x
n

∞∑
k=0

akx
k+1 =

∞∑
n=1

an−1x
n

Now each sum begins with the same power of x,
∞∑
k=1

ak+1x
k +

∞∑
k=0

akx
k+1 = a1 +

∞∑
n=1

an+1x
n +

∞∑
n=1

an−1x
n = a1 +

∞∑
n−0

(an+1 + an−1)x
n

21. You may use a different symbol for the summation index if you like (it is a dummy
variable):

∞∑
n=2

n(n− 1)anx
n−2

We would like this to be indexed using xk, k = 0, 1, 2, . . .. This means that k = n− 2
or n = k + 2. Making the substitutions in each term,

∞∑
n=2

n(n− 1)anx
n−2 =

∞∑
k=0

(k + 2)(k + 1)ak+2x
k

22. In this case, the powers begin with x2, so we let k = n + 2 or n = k − 2, with
k = 2, 3, 4, . . .:

∞∑
n=0

anx
n+2 =

∞∑
k=2

ak−2x
k

23. Take care of the product with x first,

x
∞∑
n=1

nanx
n−1 +

∞∑
k=0

akx
k =

∞∑
n=1

nanx
n +

∞∑
k=0

akx
k

The first sum could begin with zero- It would make the first term of the sum zero.
Therefore,

∞∑
n=0

nanx
n +

∞∑
k=0

akx
k =

∞∑
n=1

(n + 1)anx
n


