Selected Solutions, Section 6.5

2. Solve y" +4y =6(t —m) —0(t — 2m), y(0) =0 and '(0) = 0.
It’s useful to think about the problem before solving it:

Up until time ¢ = 7, we have a spring-mass system with no damping and
no initial displacement or velocity. Left alone, the solution would be y = 0.
However, at time ¢t = 7, the system is given positive velocity, and the solution
starts. At time t = 27, the system is given a velocity of —1. Depending on
what the velocity of the mass is at that time will tell us if we slow down, stop,
or speed up- And then that solution will continue for all time (no damping).

Solving the system algebraically, we solve for Y (s):

—TS __ ,—27S

e
s2+4

e

Think of this as:
(e—7TS o e—27rs) H(S)

so that once we find h(t), the inverse transform will be:
Ur(t)h(t — ) — ug (t)h(t — 2m)

In this case,
1
H =
() s2+4

The solution to the IVP can be simplified since h is periodic with period 7:

~ B = %sin(Zt)

Y(t) = ur (t)h(t — m) — o ()h(t — 27) = h(t)(ur(t) — u2.(t))
Therefore, the solution can be written as:

lsin(2t) ifr <t<2r
_ 2 —_
y(t) = { 0 elsewhere

3. Y +3y +2y=46(t—=5) 4 u(t), y(0) =0, y'(0) = 1/2.

Sometimes it is useful to think about what the ODE is before solving it. In this case,

If this represented the model of a mass-spring system, notice that there are
three distinct phases of motion- The first begins at time 0, when we have no
forcing, but an initial velocity of 1/2. If left alone, the homogeneous solution
would die off quickly. However, at ¢t = 5, the system is given a unit impulse,
which starts the system off again (although with a larger velocity that the
initial velocity). Again, if left alone, the system would quickly go back to
equilibrium. Finally, at time 10, we start a constant force of 1, and continue
that through time- We expect our solution to become constant as well (since
the homogeneous part of the solution will die off).



Now we’ll solve it algebraically and plot the result in Wolfram Alpha:
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(82 +3s+2)Y =e ™ +

1 1 1
Y — —5s - —10s
(s) 32+35+2<e +2>+e s(s?2 4+ 3s+2)

We have two sets of partial fractions to compute:

S N
$24+35+2  s+2 s+1

1 12 1/2 1

s(s2+3s+2) s  s+2 s+1

Therefore, the inverse Laplace transform gives:

1 1
(_ef2t + eft) + us(t) (ef(tﬂ%) _ 672(7&75)) + uo(t) (5 + 5672(1%10) _ e(tlo))

N | —

y(t) =

The solution corresponds to what we had expected. In Wolfram Alpha, we can plot the
solution:

solve y’’+3y’+2y=Dirac(t-5)+Heaviside(t-10), with y(0)=0, y’(0)=1/2

The partial fractions here are a little heavy. Here’s how I might do them:

1 _As—i—B Cs+ D

(s2+1)(s?+25s+3) s2+1 +52+25+3

so that
1= (As+ B)(s*+2s+3) + (Cs+ D)(s* + 1)

This leads us to the system of equations:

sterms |0 =A4+C
s>terms |0 =B+2A+D
sterms |0 =3A+2B+C

Constants | 1 =3B+ D

Using the second and fourth equations, we might get a nice substitution:

—-B—D =2A 1
2B =1+4+2A

And with Equation 1, B = % — C'. Put these into Equation 3 and we can solve for C"

0=3(-C)+2(1/2-C)+C = o:%

From which we now have A= —1/4, B=1/4, C =1/4 and D = 1/4.
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14.

15.

16.
17-19.

Remember that (¢ — ¢) f(t) = d(t — ¢) f(c¢). Therefore,

L(5(t —27) cos(t)) = e ?™ cos(2m) = e *"*

It may be easiest to do this generally, then look at what happens for specific values of
:
v+ +y=0t—-1)  y(0)=y(0)=0

Take the Laplace transform of both sides and solve for Y'(s):
s2+ys+1

Our choice of table entry for inversion depends on whether or not the denominator is
irreducible. We can tell by completing the square:

rmr= () (1-2) = (4 1) (ﬂ>

2 4 2 2

In the cases we are asked to consider, v = 1/2,1/4 and 0, the denominator is irreducible.
Now invert the transform: Given

then

Vi

The overall solution is then w; (¢t)h(t — 1).

2 4 — 2
hE) = — i <_M t>

For parts (b) and (c), we are meant to use the computer to solve for the maximum. We
can answer part (d): If v = 0, then solution simplifies to

h(t) = sin(t)

so that the maximum of h(t) occurs at ¢t = 7/2 (so the maximum of h(t — 1) occurs at
t=1+4+m/2.

The solution to this one is almost identical to the previous problem, except we multiply
by k:

y(t) = kur (Dh(t — 1)
where h(t) was found in #14. The remaining problems are meant to be done on a
computer.

Omit this problem.

In these problems, we work with using the sum. Try to think about how the sum of the
impulses will effect your solution- The homogeneous solution is simply a sum of sin(t)
and cos(t), so that the homogeneous part of the solution has a period of 2.
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17.

18.

In this problem, the first impulse occurs at t = m, and so that will start a sine
function:

e—ﬂ'S

(s"+1)Y(s)=e ™ = Y(s)= = y(t) = u,(t)sin(t — )

s2+1
At t = 27 comes our next unit impulse. Note (from a sketch of y(t)) that y/'(27) =
—1, so the impulses will cancel each other out. Algebraically,

Y(t) = ur(t)sin(t — m) + ugr(t) sin(t — 27) = ) (—sin(t)) + uax(t) sin(t)
Writing it piecewise,

0 fo<t<m
y(t) =< —sin(t) ifrn<t<2rm
0 ift>2r

Now when §(t—37) comes along, it starts the same motion as before (then §(t —4)
turns it off again, then §(¢ —57) starts it up again, etc.). Therefore, the solution (in
piecewise form) is the following- After time 207, the solution will be zero following
the pattern:
( 0 ifo<t<nm
—sin(t) ifr<t<2n

0 if2r<t<3m
y(t) = ¢ —sin(t) if3r <t <dnm

—sin(t) if 197 <t < 207
0 ift>20m

In Exercise 18, we start the same way- at ¢ = 7w we impart a unit impulse, and that
starts a sine function going (that is, sin(t — m) = —sin(¢)).

After 7 units of time (¢ = 27), the curve has a velocity of —1, and we impart
an additional unit impulse in the negative direction (that will make the amplitude
increase by 1).

Similarly, at ¢t = 3w, the curve now has a velocity of 2, and we will impart an
additional unit impulse in the positive direction (so the amplitude increases to 3).
The same thing happens at ¢t = 4n, t = 5w, etc. Therefore, the sine function will
continue to grow 1 unit in amplitude for every 7 units in time until we get to 207.
After that, the solution will have an amplitude of 20.

Let’s see if we can show that algebraically: We know that
sin(t — kmw) = —sin(t) k=1,3,57,--

and
sin(t — km) = sin(t) k=2,4,6,8,---



19.

Therefore,

( 0 fo<t<m
—sin(t) ifr <t<2n
20 —2sin(t) if 2r <t <37
y(t) = Z(_l)k+1uk7r(t) sin(t — kr) = —3sin(t) if 3w <t <dn

k=1 :
—19sin(t) if 197 <t < 207
| —20sin(t) ift > 207

This one is more complex since the “hits” don’t occur at the end of a period (rather
they occur in the middle of a period).

We can analyze this easiest by writing the solution piecewise using the following
substitutions (do them graphically if you're not sure):

sin(t — w/2) = cos(t)
sin(t —m) = —sin(¢)
sin(t — 37/2) = —cos(t)

sin(t — 27) = sin(¢):

Therefore, we end up with a function that is 27 periodic:

(

0 if0<t<m/2

cos(t) ifrn/2<t<m
cos(t) —sin(t) if m <t < 37/2
y(t) = —sin(t) if3w/2 <t <2m
0 if2r <t<3m/2
0 if¢t>20m




