Selected Solutions, Section 6.5

2. Solve $y^{\prime \prime}+4 y=\delta(t-\pi)-\delta(t-2 \pi), y(0)=0$ and $y^{\prime}(0)=0$.

It's useful to think about the problem before solving it:
Up until time $t=\pi$, we have a spring-mass system with no damping and no initial displacement or velocity. Left alone, the solution would be $y=0$. However, at time $t=\pi$, the system is given positive velocity, and the solution starts. At time $t=2 \pi$, the system is given a velocity of -1 . Depending on what the velocity of the mass is at that time will tell us if we slow down, stop, or speed up- And then that solution will continue for all time (no damping).

Solving the system algebraically, we solve for $Y(s)$:

$$
Y=\frac{\mathrm{e}^{-\pi s}-\mathrm{e}^{-2 \pi s}}{s^{2}+4}
$$

Think of this as:

$$
\left(\mathrm{e}^{-\pi s}-\mathrm{e}^{-2 \pi s}\right) H(s)
$$

so that once we find $h(t)$, the inverse transform will be:

$$
u_{\pi}(t) h(t-\pi)-u_{2 \pi}(t) h(t-2 \pi)
$$

In this case,

$$
H(s)=\frac{1}{s^{2}+4} \quad \Rightarrow \quad h(t)=\frac{1}{2} \sin (2 t)
$$

The solution to the IVP can be simplified since h is periodic with period π :

$$
y(t)=u_{\pi}(t) h(t-\pi)-u_{2 \pi}(t) h(t-2 \pi)=h(t)\left(u_{\pi}(t)-u_{2 \pi}(t)\right)
$$

Therefore, the solution can be written as:

$$
y(t)=\left\{\begin{aligned}
\frac{1}{2} \sin (2 t) & \text { if } \pi \leq t<2 \pi \\
0 & \text { elsewhere }
\end{aligned}\right.
$$

3. $y^{\prime \prime}+3 y^{\prime}+2 y=\delta(t-5)+u_{10}(t), y(0)=0, y^{\prime}(0)=1 / 2$.

Sometimes it is useful to think about what the ODE is before solving it. In this case,
If this represented the model of a mass-spring system, notice that there are three distinct phases of motion- The first begins at time 0 , when we have no forcing, but an initial velocity of $1 / 2$. If left alone, the homogeneous solution would die off quickly. However, at $t=5$, the system is given a unit impulse, which starts the system off again (although with a larger velocity that the initial velocity). Again, if left alone, the system would quickly go back to equilibrium. Finally, at time 10, we start a constant force of 1 , and continue that through time- We expect our solution to become constant as well (since the homogeneous part of the solution will die off).

Now we'll solve it algebraically and plot the result in Wolfram Alpha:

$$
\begin{gathered}
\left(s^{2}+3 s+2\right) Y=\mathrm{e}^{-5 s}+\frac{\mathrm{e}^{-10 s}}{s}+\frac{1}{2} \\
Y(s)=\frac{1}{s^{2}+3 s+2}\left(\mathrm{e}^{-5 s}+\frac{1}{2}\right)+\mathrm{e}^{-10 s} \frac{1}{s\left(s^{2}+3 s+2\right)}
\end{gathered}
$$

We have two sets of partial fractions to compute:

$$
\begin{gathered}
\frac{1}{s^{2}+3 s+2}=-\frac{1}{s+2}+\frac{1}{s+1} \\
\frac{1}{s\left(s^{2}+3 s+2\right)}=\frac{1 / 2}{s}+\frac{1 / 2}{s+2}-\frac{1}{s+1}
\end{gathered}
$$

Therefore, the inverse Laplace transform gives:

$$
y(t)=\frac{1}{2}\left(-\mathrm{e}^{-2 t}+\mathrm{e}^{-t}\right)+u_{5}(t)\left(\mathrm{e}^{-(t-5)}-\mathrm{e}^{-2(t-5)}\right)+u_{10}(t)\left(\frac{1}{2}+\frac{1}{2} \mathrm{e}^{-2(t-10)}-\mathrm{e}^{-(t-10)}\right)
$$

The solution corresponds to what we had expected. In Wolfram Alpha, we can plot the solution:
solve $y^{\prime \prime}+3 y^{\prime}+2 y=\operatorname{Dirac}(t-5)+H e a v i s i d e(t-10)$, with $y(0)=0, y^{\prime}(0)=1 / 2$
5. The partial fractions here are a little heavy. Here's how I might do them:

$$
\frac{1}{\left(s^{2}+1\right)\left(s^{2}+2 s+3\right)}=\frac{A s+B}{s^{2}+1}+\frac{C s+D}{s^{2}+2 s+3}
$$

so that

$$
1=(A s+B)\left(s^{2}+2 s+3\right)+(C s+D)\left(s^{2}+1\right)
$$

This leads us to the system of equations:

$$
\begin{array}{c|l}
s^{3} \text { terms } & 0=A+C \\
s^{2} \text { terms } & 0=B+2 A+D \\
s \text { terms } & 0=3 A+2 B+C \\
\text { Constants } & 1=3 B+D
\end{array}
$$

Using the second and fourth equations, we might get a nice substitution:

$$
\begin{aligned}
&-B-D=2 A \\
& \frac{3 B+D}{}=1 \\
& \hline 2 B=1+2 A
\end{aligned} \Rightarrow B=\frac{1}{2}+A
$$

And with Equation 1, $B=\frac{1}{2}-C$. Put these into Equation 3 and we can solve for C :

$$
0=3(-C)+2(1 / 2-C)+C \quad \Rightarrow \quad C=\frac{1}{4}
$$

From which we now have $A=-1 / 4, B=1 / 4, C=1 / 4$ and $D=1 / 4$.
7. Remember that $\delta(t-c) f(t)=\delta(t-c) f(c)$. Therefore,

$$
\mathcal{L}(\delta(t-2 \pi) \cos (t))=\mathrm{e}^{-2 \pi s} \cos (2 \pi)=\mathrm{e}^{-2 \pi s}
$$

14. It may be easiest to do this generally, then look at what happens for specific values of γ :

$$
y^{\prime \prime}+\gamma y^{\prime}+y=\delta(t-1) \quad y(0)=y^{\prime}(0)=0
$$

Take the Laplace transform of both sides and solve for $Y(s)$:

$$
Y=\frac{\mathrm{e}^{-s}}{s^{2}+\gamma s+1}
$$

Our choice of table entry for inversion depends on whether or not the denominator is irreducible. We can tell by completing the square:

$$
s^{2}+\gamma s+1=\left(s+\frac{\gamma}{2}\right)+\left(1-\frac{\gamma^{2}}{4}\right)=\left(s+\frac{\gamma}{2}\right)^{2}+\left(\frac{\sqrt{4-\gamma^{2}}}{2}\right)^{2}
$$

In the cases we are asked to consider, $\gamma=1 / 2,1 / 4$ and 0 , the denominator is irreducible. Now invert the transform: Given

$$
H(s)=\frac{2}{\sqrt{4-\gamma^{2}}} \frac{\frac{\sqrt{4-\gamma^{2}}}{2}}{\left(s+\frac{\gamma}{2}\right)^{2}+\left(\frac{\sqrt{4-\gamma^{2}}}{2}\right)^{2}}
$$

then

$$
h(t)=\frac{2}{\sqrt{4-\gamma^{2}}} \mathrm{e}^{-(\gamma / 2) t} \sin \left(\frac{\sqrt{4-\gamma^{2}}}{2} t\right)
$$

The overall solution is then $u_{1}(t) h(t-1)$.
For parts (b) and (c), we are meant to use the computer to solve for the maximum. We can answer part (d): If $\gamma=0$, then solution simplifies to

$$
h(t)=\sin (t)
$$

so that the maximum of $h(t)$ occurs at $t=\pi / 2$ (so the maximum of $h(t-1)$ occurs at $t=1+\pi / 2$.
15. The solution to this one is almost identical to the previous problem, except we multiply by k :

$$
y(t)=k u_{1}(t) h(t-1)
$$

where $h(t)$ was found in $\# 14$. The remaining problems are meant to be done on a computer.
16. Omit this problem.

17-19. In these problems, we work with using the sum. Try to think about how the sum of the impulses will effect your solution- The homogeneous solution is simply a sum of $\sin (t)$ and $\cos (t)$, so that the homogeneous part of the solution has a period of 2π.
17. In this problem, the first impulse occurs at $t=\pi$, and so that will start a sine function:

$$
\left(s^{1}+1\right) Y(s)=\mathrm{e}^{-\pi s} \Rightarrow Y(s)=\frac{\mathrm{e}^{-\pi s}}{s^{2}+1} \quad \Rightarrow \quad y(t)=u_{\pi}(t) \sin (t-\pi)
$$

At $t=2 \pi$ comes our next unit impulse. Note (from a sketch of $y(t))$ that $y^{\prime}(2 \pi)=$ -1 , so the impulses will cancel each other out. Algebraically,

$$
y(t)=u_{\pi}(t) \sin (t-\pi)+u_{2 \pi}(t) \sin (t-2 \pi)=u_{\pi(t)}(-\sin (t))+u_{2 \pi}(t) \sin (t)
$$

Writing it piecewise,

$$
y(t)=\left\{\begin{aligned}
0 & \text { if } 0 \leq t<\pi \\
-\sin (t) & \text { if } \pi \leq t<2 \pi \\
0 & \text { if } t \geq 2 \pi
\end{aligned}\right.
$$

Now when $\delta(t-3 \pi)$ comes along, it starts the same motion as before (then $\delta(t-4 \pi)$ turns it off again, then $\delta(t-5 \pi)$ starts it up again, etc.). Therefore, the solution (in piecewise form) is the following- After time 20π, the solution will be zero following the pattern:

$$
y(t)=\left\{\begin{aligned}
0 & \text { if } 0 \leq t<\pi \\
-\sin (t) & \text { if } \pi \leq t<2 \pi \\
0 & \text { if } 2 \pi \leq t<3 \pi \\
-\sin (t) & \text { if } 3 \pi \leq t<4 \pi \\
\vdots & \vdots \\
-\sin (t) & \text { if } 19 \pi \leq t<20 \pi \\
0 & \text { if } t \geq 20 \pi
\end{aligned}\right.
$$

18. In Exercise 18, we start the same way- at $t=\pi$ we impart a unit impulse, and that starts a sine function going (that is, $\sin (t-\pi)=-\sin (t))$.
After π units of time $(t=2 \pi)$, the curve has a velocity of -1 , and we impart an additional unit impulse in the negative direction (that will make the amplitude increase by 1).
Similarly, at $t=3 \pi$, the curve now has a velocity of 2 , and we will impart an additional unit impulse in the positive direction (so the amplitude increases to 3). The same thing happens at $t=4 \pi, t=5 \pi$, etc. Therefore, the sine function will continue to grow 1 unit in amplitude for every π units in time until we get to 20π. After that, the solution will have an amplitude of 20.
Let's see if we can show that algebraically: We know that

$$
\sin (t-k \pi)=-\sin (t) \quad k=1,3,5,7, \cdots
$$

and

$$
\sin (t-k \pi)=\sin (t) \quad k=2,4,6,8, \cdots
$$

Therefore,

$$
y(t)=\sum_{k=1}^{20}(-1)^{k+1} u_{k \pi}(t) \sin (t-k \pi)=\left\{\begin{aligned}
0 & \text { if } 0 \leq t \leq \pi \\
-\sin (t) & \text { if } \pi \leq t<2 \pi \\
-2 \sin (t) & \text { if } 2 \pi \leq t<3 \pi \\
-3 \sin (t) & \text { if } 3 \pi \leq t<4 \pi \\
\vdots & \vdots \\
-19 \sin (t) & \text { if } 19 \pi \leq t<20 \pi \\
-20 \sin (t) & \text { if } t \geq 20 \pi
\end{aligned}\right.
$$

19. This one is more complex since the "hits" don't occur at the end of a period (rather they occur in the middle of a period).
We can analyze this easiest by writing the solution piecewise using the following substitutions (do them graphically if you're not sure):

$$
\begin{aligned}
\sin (t-\pi / 2) & =\cos (t) \\
\sin (t-\pi) & =-\sin (t) \\
\sin (t-3 \pi / 2) & =-\cos (t) \\
\sin (t-2 \pi) & =\sin (t) \vdots
\end{aligned}
$$

Therefore, we end up with a function that is 2π periodic:

$$
y(t)=\left\{\begin{aligned}
0 & \text { if } 0 \leq t<\pi / 2 \\
\cos (t) & \text { if } \pi / 2 \leq t<\pi \\
\cos (t)-\sin (t) & \text { if } \pi \leq t<3 \pi / 2 \\
-\sin (t) & \text { if } 3 \pi / 2 \leq t<2 \pi \\
0 & \text { if } 2 \pi \leq t<3 \pi / 2 \\
\vdots & \vdots \\
0 & \text { if } t \geq 20 \pi
\end{aligned}\right.
$$

