Selected Solutions, Section 6.6

2. You can choose almost any function, even $1 * 1$:

$$
1 * 1=\int_{0}^{t} 1 d x=\left.x\right|_{0} ^{t}=t
$$

3. The following trig identity is used ${ }^{1}$

$$
\sin (A) \sin (B)=\frac{1}{2}[\cos (A-B)-\cos (A+B)]
$$

Then:

$$
\sin (t) * \sin (t)=\int_{0}^{t} \sin (t-x) \sin (x) d x=\frac{1}{2} \int_{0}^{t} \cos (t-2 x)-\cos (t) d x
$$

Use $u=t-2 x, d u=-2 d x$ for the first term:

$$
\int \cos (t-2 x) d x=-\frac{1}{2} \int \cos (u) d u=-\frac{1}{2} \sin (t-2 x)
$$

The full antiderivative becomes:

$$
\frac{1}{2}\left(-\frac{1}{2} \sin (t-2 x)-\left.x \cos (t)\right|_{0} ^{t}=\frac{1}{2}\left[\left(-\frac{1}{2} \sin (-t)-t \cos (t)\right)-\left(-\frac{1}{2} \sin (t)\right)\right]\right.
$$

from which we get the textbook's answer: $(1 / 2)(\sin (t)-t \cos (t))$
4. We want to write:

$$
\int_{0}^{t}(t-\tau)^{2} \cos (2 \tau) d \tau \quad \text { as } \quad \int_{0}^{t} f(t-\tau) g(\tau) d \tau
$$

In this case, we see that $f(t)=t^{2}, g(t)=\cos (2 t)$, with corresponding Laplace transforms $F(s)=2 / s^{3}$ and $G(s)=s /\left(s^{2}+4\right)$. By the convolution theorem:

$$
\mathcal{L}(f * g)=F(s) G(s)=\frac{2 s}{s^{3}\left(s^{2}+4\right)}=\frac{2}{s^{2}\left(s^{2}+4\right)}
$$

6. Same type as 4:

$$
\int_{0}^{t}(t-\tau) \mathrm{e}^{\tau} d \tau=f * g
$$

where $f(t)=t, g(t)=\mathrm{e}^{t}$, and corresponding Laplace transforms: $F(s)=1 / s^{2}$ and $G(s)=1 /(s-1)$. Therefore,

$$
\mathcal{L}(f * g)=F(s) G(s)=\frac{1}{s^{2}(s-1)}
$$

[^0]8. The idea here is to write the given expression as $F(s) G(s)$, so that the inverse transform is $f * g$:
$$
\frac{1}{s^{4}\left(s^{2}+1\right)}=F(s) G(s)
$$
where
$$
F(s)=\frac{1}{s^{4}} \quad G(s)=\frac{1}{s^{2}+1}
$$

Notice that to invert $F(s)$, we need to multiply and divide by $3!=6$. Now,

$$
\mathcal{L}^{-1}(F(s) G(s))=\frac{1}{6} t^{3} * \sin (t)=\frac{1}{6} \int_{0}^{t}(t-x)^{3} \sin (x) d x
$$

9. Same idea, you might group the s in the numerator with the $s^{2}+4$:

$$
\frac{s}{(s+1)\left(s^{2}+4\right)}=F(s) G(s) \quad \text { where } F(s)=\frac{1}{s+1} \quad G(s)=\frac{s}{s^{2}+4}
$$

Therefore,

$$
\mathcal{L}^{-1}(F(s) G(s))=f * g=\mathrm{e}^{-t} * \cos (2 t)=\int_{0}^{t} \mathrm{e}^{-(t-x)} \cos (2 x) d x
$$

13.

$$
\begin{gathered}
y^{\prime \prime}+\omega^{2} y=g(t) \quad y(0)=0 \quad y^{\prime}(0)=1 \\
s^{2} Y-1+\omega^{2} Y=G(s) \quad \Rightarrow \quad\left(s^{2}+\omega^{2}\right) Y=G(s)+1 \quad \Rightarrow \quad Y=G(s) \frac{1}{s^{2}+\omega^{2}}+\frac{1}{s^{2}+\omega^{2}}
\end{gathered}
$$

With:

$$
\mathcal{L}^{-1}\left(\frac{1}{s^{2}+\omega^{2}}\right)=\mathcal{L}^{-1}\left(\frac{1}{\omega} \frac{\omega}{s^{2}+\omega^{2}}\right)=\frac{1}{\omega} \sin (\omega t)
$$

Therefore, the solution is (the question asked us to write it as an integral):

$$
y(t)=\frac{1}{\omega}(g(t) * \sin (\omega t)+\sin (\omega t))=\frac{1}{\omega}\left(\int_{0}^{t} g(t-x) \sin (\omega x) d x+\sin (\omega t)\right)
$$

14. Similar to Problem 13,

$$
\begin{gathered}
y^{\prime \prime}+2 y^{\prime}+2 y=\sin (\alpha t) \quad \text { zero ICs } \\
\left(s^{2}+2 s+2\right) Y=\frac{\alpha}{s^{2}+\alpha^{2}} \quad \Rightarrow \\
Y=\frac{\alpha}{s^{2}+\alpha^{2}} \cdot \frac{1}{s^{2}+2 s+2}=\frac{\alpha}{s^{2}+\alpha^{2}} \cdot \frac{1}{(s+1)^{2}+1}
\end{gathered}
$$

The inverse transform is the convolution of the inverses taken separately,

$$
\mathcal{L}^{-1}\left(\frac{\alpha}{s^{2}+\alpha^{2}}\right)=\sin (\alpha t) \quad \mathcal{L}^{-1}\left(\frac{1}{(s+1)^{2}+1}\right)=\mathrm{e}^{-t} \sin (t)
$$

so that:

$$
y(t)=\sin (\alpha t) * \mathrm{e}^{-t} \sin (t)=\int_{0}^{t} \sin (\alpha(t-x)) \mathrm{e}^{-x} \sin (x) d x
$$

21. We did this problem in class as well- In this question, k is a function instead of the usual constant. Taking the Laplace transform of both sides, (then solve for $\Phi(s)$):

$$
\Phi(s)+K(s) \Phi(s)=F(s) \quad \Rightarrow \quad \Phi(s)=\frac{F(s)}{1+K(s)}
$$

22. (a) Same idea as 21:

$$
\Phi(s)+\frac{\Phi(s)}{s^{2}}=\frac{2}{s^{2}+4} \Rightarrow \Phi(s)\left(\frac{s^{2}+1}{s^{2}}\right)=\frac{2}{s^{2}+4}
$$

Therefore,

$$
\Phi(s)=\frac{2 s^{2}}{\left(s^{2}+4\right)\left(s^{2}+1\right)}=\frac{A s+B}{s^{2}+1}+\frac{C s+D}{s^{2}+4}
$$

Doing the partial fractions, we get:

$$
\begin{array}{r}
A+C=0 \\
4 A+C=0
\end{array} \quad \text { and } \quad \begin{array}{r}
B+D=2 \\
4 B+D=0
\end{array} \quad \Rightarrow \quad B=\frac{-2}{3}, D=\frac{8}{3}, A=0, C=0
$$

Therefore,

$$
\phi(t)=-\frac{2}{3} \sin (t)+\frac{4}{3} \sin (2 t)
$$

(b) Some information that is needed: How do you differentiate under the integral sign? Generally speaking,

$$
\frac{d}{d t} \int_{a}^{h(t)} F(t, u) d u=F(t, h(t)) h^{\prime}(t)+\int_{a}^{h(t)} F_{t}(t, u) d u
$$

The first part is the usual FTC, but the second part is probably not known to you (so it would be given as part of the problem). Given that,

$$
\phi^{\prime}(t)+(t-t) \phi(t)+\int_{0}^{t} \phi(u) d u=2 \cos (2 t)
$$

Integrating a second time,

$$
\phi^{\prime \prime}(t)+\phi(t)=-4 \sin (2 t)
$$

For the initial conditions, go back to the original equation to see that $\phi(0)=0$ and to our first derivative to see that $\phi^{\prime}(0)=2$
(c) To solve the IVP using Chapter 3 methods, the homogeneous part is

$$
y_{h}(t)=C_{1} \sin (t)+C_{2} \cos (t)
$$

And the particular part, use Method of Undetermined Coefficients:
$y_{p}=A \cos (2 t)+B \sin (2 t) \quad \Rightarrow \quad y_{p}^{\prime \prime}+y_{p}=-3 A \cos (2 t)-3 B \sin (2 t)=-4 \sin (2 t)$ so the full solution is the same as the one before.
23. (a) Solve by Laplace transform. You should get:

$$
\Phi(s)=\frac{s}{s^{2}+1}
$$

(b) The first derivative is:

$$
\phi^{\prime}+(t-t) \phi(t)+\int_{0}^{t} \phi(u) d u=0
$$

so that the differential equation is

$$
\phi^{\prime \prime}(t)+\phi(t)=0
$$

with ICs $\phi(0)=1$ and $\phi^{\prime}(0)=0$ (from the equation for the derivative). This is simply the homogeneous solution-
26. (a) Solve by Laplace transform:

$$
s \Phi-0+\Phi(s) \frac{1}{s^{2}}=\frac{1}{s^{2}} \quad \Rightarrow \quad \Phi(s)=\frac{1}{s^{3}+1}
$$

Information you might find necessary: $s^{3}+1=(s+1)\left(s^{2}-s+1\right)$
Therefore, using partial fractions, we find that

$$
\Phi(s)=-\frac{1}{3} \frac{s-2}{s^{2}-s+1}+\frac{1}{3} \cdot \frac{1}{s+1}
$$

(See if you can finish up from there).
(b) We need to differentiate twice to get rid of the integral: $\phi^{\prime \prime \prime}+\phi=0$.

For ICs, we see that $\phi(0)=0$ was given, then from the original equation, $\phi^{\prime}(0)=0$ and from our first derivative, $\phi^{\prime \prime}(0)=1$.
(c) To continue, from the previous section, we know that the characteristic equation factors as:

$$
(r+1)\left(r^{2}-r+1\right)=0
$$

From which we get one real value, $r=-1$, and two complex values, $r=\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$. From Chapter 3, I think we would probably guess that the solution is therefore

$$
\phi(t)=C_{1} \mathrm{e}^{-t}+\mathrm{e}^{t / 2}\left(C_{2} \cos (\sqrt{3} / 2 t)+C_{3} \sin (\sqrt{3} / 2 t)\right.
$$

which is hopefully what we got earlier.

[^0]: ${ }^{1}$ I expected that you would probably need to look this up- Not necessary to memorize it.

