Selected Solutions: Section 6.1

1. This is piecewise continuous, but not continuous at $t=1$.
2. Not continuous and not piecewise continuous.
3. Continuous (so also piecewise continuous).
4. (a) Find the Laplace transform of t (done in class).
(b) Find the Laplace transform of t^{2} :

$$
\mathcal{L}\left(t^{2}\right)=\int_{0}^{\infty} \mathrm{e}^{-s t} t^{2} d t
$$

which is integrated by parts:

$$
\begin{aligned}
& +t^{2} \\
& - \\
& - \\
& + \\
& + \\
& - \\
& - \\
& - \\
& \hline
\end{aligned} \mathrm{e}^{-s t}\left(1 /{ }^{-s t} \mathrm{e}^{-s t} \mathrm{e}^{-s t}\left(1 / s^{3}\right) \mathrm{e}^{-s t} \quad \Rightarrow \quad \lim _{T \rightarrow \infty}-\left.\mathrm{e}^{-s t}\left(\frac{s^{2} t^{2}+2 s t+2}{s^{3}}\right)\right|_{0} ^{T}=0+\frac{2}{s^{3}}, \quad s>0\right.
$$

NOTE: The limit is zero because

$$
\lim _{t \rightarrow \infty} t^{n} \mathrm{e}^{-s t}=0
$$

for any $n=0,1,2,3, \cdots$ and $s>0$ (by l'Hospital's rule). You should include a note like this for your justification (unless you compute out the limit).
21. Recall that the inverse tangent function has a limit as $t \rightarrow \infty$; the function approaches $\pi / 2$ (which is a vertical asymptote for the original tangent).
23. This one is a little tricky in that you do NOT want to compute the antiderivative (the antiderivative is not an "elementary" function- meaning we would need a series representation. Rather, we note that

$$
t^{-2} \mathrm{e}^{t}=\frac{\mathrm{e}^{t}}{t^{2}}
$$

which diverges (to infinity). Therefore, the integral given will diverge as well.
26. The Gamma Function $\Gamma(p)$ is an extension of the factorial function to non-integers. In this exercise, we show that the Gamma function, when restricted to the integers, gives the factorial.
(a) If $p>0$, then show $\Gamma(p+1)=p \Gamma(p)$:

$$
\Gamma(p+1)=\int_{0}^{\infty} \mathrm{e}^{-x} x^{p} d x
$$

Integration by parts gives us the answer for $p>0$. Actually, the following is true for $p>-1$:

$$
\begin{array}{c|c|c}
\hline+ & x^{p} & \mathrm{e}^{-x} \\
- & p x^{p-1} & -\mathrm{e}^{-x}
\end{array} \Rightarrow-\left.x^{p} \mathrm{e}^{-x}\right|_{0} ^{\infty}+p \int_{0}^{\infty} \mathrm{e}^{-x} x^{p-1} d x
$$

The quantity $-x^{p} \mathrm{e}^{-x}$ goes to zero as $x \rightarrow \infty$ for any p. However, if p is negative we have to be careful about x^{p} as $x \rightarrow 0$. If we restrict $p>0$, then $x^{p} \mathrm{e}^{-x}=0$ at zero, and we get:

$$
\Gamma(p+1)=\int_{0}^{\infty} \mathrm{e}^{-x} x^{p} d x=p \int_{0}^{\infty} \mathrm{e}^{-x} x^{p-1} d x=p \Gamma(p)
$$

(b) Show that $\Gamma(1)=1$. We can do this directly by taking $p=0$:

$$
\int_{0}^{\infty} \mathrm{e}^{-x} d x=-\left.\mathrm{e}^{-x}\right|_{0} ^{\infty}=0--1=1
$$

(c) If p is a positive integer, show that $\Gamma(n+1)=n$!.

We can show this by induction. We note from parts (a) and (b) that:

$$
\Gamma(1)=1 \quad \Gamma(2)=1 \cdot \Gamma(1)=1 \quad \Gamma(3)=2 \cdot \Gamma(2)=2 \cdot 1
$$

In this case, we showed that the formula works if $n=1,2$ or 3 (not necessary, but it does give you a general idea).
Assume that the formula works for $n=k, \Gamma(k+1)=k!$. Show that it works for $n=k+1$. By Part (a),

$$
\Gamma(k+2)=(k+1) \Gamma(k+1)
$$

And by what we assumed, if $k+2$ is a positive integer, then

$$
\Gamma(k+2)=(k+1) \Gamma(k+1)=(k+1) k!=(k+1)!
$$

Therefore, we have proved by induction that $\Gamma(n+1)=n$!
(d) (This part can be omitted) By repeating the process in (c),

$$
\begin{aligned}
\Gamma(p+n)= & p \Gamma(p+n-1)=(p+n-1)(p+n-2) \Gamma(p+n-2)= \\
& =\ldots=p(p+1)(p+2) \cdots(p+n-1) \Gamma(p)
\end{aligned}
$$

27. We typically won't use the Gamma function, but this exercise helps us to understand Table Entry \#4 a little better (in the Table of Laplace transforms).
(a) Hint: Let $x=s t$, then do a change of variables.
(b) Straightforward- Use the result of 26.
(c) This is an interesting problem, but may be omitted. Assuming the formulas given in the text,

$$
\mathcal{L}\left(t^{-1 / 2}\right)=\int_{0}^{\infty} \mathrm{e}^{-s t} \frac{1}{\sqrt{t}} d t
$$

Looking at what we want, we'll try setting $x^{2}=s t$ and perform a substitution. Finding $d x$ and $d t$, we get:

$$
2 x d x=s d t \quad \Rightarrow \quad 2 \sqrt{s t} d x=s d t \quad \Rightarrow \quad \frac{2}{\sqrt{s}} d x=\frac{1}{\sqrt{t}} d t
$$

which is what we needed to get the expression in the text:

$$
\mathcal{L}\left(t^{-1 / 2}\right)=\frac{2}{\sqrt{s}} \int_{0}^{\infty} \mathrm{e}^{-x^{2}} d x=\sqrt{\frac{\pi}{s}}
$$

(d) Finally, we'll use the result from $26: \Gamma(3 / 2)=\frac{1}{2} \Gamma(1 / 2)$ to compute this:

$$
\mathcal{L}\left(t^{1 / 2}\right)=\frac{\Gamma(3 / 2)}{s^{3 / 2}}=\frac{\sqrt{\pi}}{2 s^{3 / 2}}
$$

