
Selected Solutions: Section 6.1

1. This is piecewise continuous, but not continuous at t = 1.

2. Not continuous and not piecewise continuous.

3. Continuous (so also piecewise continuous).

5. (a) Find the Laplace transform of t (done in class).

(b) Find the Laplace transform of t2:

L(t2) =
∫ ∞
0

e−stt2 dt

which is integrated by parts:

+ t2 e−st

− 2t −(1/s)e−st

+ 2 (1/s2)e−st

− 0 −(1/s3)e−st

⇒ lim
T→∞

−e−st
(
s2t2 + 2st+ 2

s3

)∣∣∣∣∣
T

0

= 0 +
2

s3
, s > 0

NOTE: The limit is zero because

lim
t→∞

tne−st = 0

for any n = 0, 1, 2, 3, · · · and s > 0 (by l’Hospital’s rule). You should include a
note like this for your justification (unless you compute out the limit).

21. Recall that the inverse tangent function has a limit as t→∞; the function approaches
π/2 (which is a vertical asymptote for the original tangent).

23. This one is a little tricky in that you do NOT want to compute the antiderivative
(the antiderivative is not an “elementary” function- meaning we would need a series
representation. Rather, we note that

t−2et =
et

t2

which diverges (to infinity). Therefore, the integral given will diverge as well.

26. The Gamma Function Γ(p) is an extension of the factorial function to non-integers. In
this exercise, we show that the Gamma function, when restricted to the integers, gives
the factorial.



(a) If p > 0, then show Γ(p+ 1) = pΓ(p):

Γ(p+ 1) =
∫ ∞
0

e−xxp dx

Integration by parts gives us the answer for p > 0. Actually, the following is true
for p > −1:

+ xp e−x

− pxp−1 −e−x
⇒ −xpe−x

∣∣∣∞
0

+ p
∫ ∞
0

e−xxp−1 dx

The quantity −xpe−x goes to zero as x→∞ for any p. However, if p is negative
we have to be careful about xp as x→ 0. If we restrict p > 0, then xpe−x = 0 at
zero, and we get:

Γ(p+ 1) =
∫ ∞
0

e−xxp dx = p
∫ ∞
0

e−xxp−1 dx = pΓ(p)

(b) Show that Γ(1) = 1. We can do this directly by taking p = 0:∫ ∞
0

e−x dx = −e−x
∣∣∣∞
0

= 0−−1 = 1

(c) If p is a positive integer, show that Γ(n+ 1) = n!.

We can show this by induction. We note from parts (a) and (b) that:

Γ(1) = 1 Γ(2) = 1 · Γ(1) = 1 Γ(3) = 2 · Γ(2) = 2 · 1

In this case, we showed that the formula works if n = 1, 2 or 3 (not necessary, but
it does give you a general idea).

Assume that the formula works for n = k, Γ(k + 1) = k!. Show that it works for
n = k + 1. By Part (a),

Γ(k + 2) = (k + 1)Γ(k + 1)

And by what we assumed, if k + 2 is a positive integer, then

Γ(k + 2) = (k + 1)Γ(k + 1) = (k + 1)k! = (k + 1)!

Therefore, we have proved by induction that Γ(n+ 1) = n!

(d) (This part can be omitted) By repeating the process in (c),

Γ(p+ n) = pΓ(p+ n− 1) = (p+ n− 1)(p+ n− 2)Γ(p+ n− 2) =

= . . . = p(p+ 1)(p+ 2) · · · (p+ n− 1)Γ(p)



27. We typically won’t use the Gamma function, but this exercise helps us to understand
Table Entry #4 a little better (in the Table of Laplace transforms).

(a) Hint: Let x = st, then do a change of variables.

(b) Straightforward- Use the result of 26.

(c) This is an interesting problem, but may be omitted. Assuming the formulas given
in the text,

L(t−1/2) =
∫ ∞
0

e−st
1√
t
dt

Looking at what we want, we’ll try setting x2 = st and perform a substitution.
Finding dx and dt, we get:

2x dx = s dt ⇒ 2
√
st dx = s dt ⇒ 2√

s
dx =

1√
t
dt

which is what we needed to get the expression in the text:

L(t−1/2) =
2√
s

∫ ∞
0

e−x
2

dx =

√
π

s

(d) Finally, we’ll use the result from 26: Γ(3/2) = 1
2
Γ(1/2) to compute this:

L(t1/2) =
Γ(3/2)

s3/2
=

√
π

2s3/2


