Help on section 6.2

The main ideas:

- Take the Laplace transform of a DE.
- Solve it for $Y(s)$ (the transform of $y(t)$).
- Invert the transform- This may involve partial fractions and/or completing the square.

The first set of exercises focuses on this last part, where partial fractions and/or completing the square will be performed in order to use the table to do the inverse transform.
2. Table entry 11.
4. Use Partial Fractions:

$$
\frac{3 s}{s^{2}-s-6}=\frac{A}{s+2}+\frac{B}{s-3}
$$

so that

$$
A(s-3)+B(s+2)=3 s
$$

If $s=3$, then $B=9 / 5$. If $s=-2$, then $A=6 / 5$. Now,

$$
\mathcal{L}^{-1}\left(\frac{6}{5} \frac{1}{s+2}+\frac{9}{5} \frac{1}{s-3}\right)=\frac{6}{5} \mathcal{L}^{-1}\left(\frac{1}{s+2}\right)+\frac{9}{5} \mathcal{L}^{-1}\left(\frac{1}{s-3}\right)=\frac{6}{5} \mathrm{e}^{-2 t}+\frac{9}{5} \mathrm{e}^{3 t}
$$

You may use Wolfram Alpha to check your answer:

```
inverse laplace transform of 3s/(s^2-s-6)
```

8. Use Partial fractions:

$$
\frac{8 s^{2}-4 s+12}{s\left(s^{2}+4\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+4}
$$

Therefore,

$$
8 s^{2}-4 s+12=A\left(s^{2}+4\right)+(B s+C) s \quad \Rightarrow \quad 8 s^{2}-4 s+12=(A+B) s^{2}+C s+4 A
$$

Therefore,

$$
\begin{aligned}
A+B & =4 \\
C & =-4 \quad \Rightarrow \quad A=3, C=-4, B=1 \\
4 A & =12
\end{aligned}
$$

And we get:

$$
\frac{8 s^{2}-4 s+12}{s\left(s^{2}+4\right)}=\frac{3}{s}+\frac{5 s-4}{s^{2}+4}
$$

For the inverse Laplace transform, we look at this as:

$$
3 \frac{1}{s}+5 \frac{s}{s^{2}+4}-2 \frac{2}{s^{2}+4}
$$

so that our final answer is:

$$
3+5 \cos (2 t)-2 \sin (2 t)
$$

In Wolfram Alpha, you can ask for just the partial fraction decomposition:
partial fraction ($\left.8 s^{\wedge} 2-4 s+12\right) /(s(s \wedge 2+4))$
10. Complete the square in the denominator:

$$
\frac{2 s-3}{s^{2}+2 s+1+9}=\frac{2(s+1)-5}{(s+1)^{2}+9}=2 \frac{s+1}{(s+1)^{2}+3^{2}}-\frac{5}{3} \frac{3}{(s+1)^{2}+3^{2}}
$$

12. Take the Laplace transform of both sides:

$$
s^{2} Y-s y(0)-y^{\prime}(0)+3(s Y-y(0))+2 Y=0
$$

Apply initial conditions and solve for $Y(s)$:

$$
Y(s)=\frac{s+3}{s^{2}+3 s+2}=\frac{2}{s+1}+\frac{1}{s+2}
$$

so that

$$
y(t)=2 \mathrm{e}^{-t}-\mathrm{e}^{-2 t}
$$

14. Same idea:

$$
s^{2} Y-s y(0)-y^{\prime}(0)-4(s Y-y(0))+4 Y=0
$$

Apply initial conditions and solve for $Y(s)$:

$$
Y(s)=\frac{s-3}{\left(s^{2}-4 s+4\right.}=\frac{(s-3)}{(s-2)^{2}}=\frac{(s-2)-1}{(s-2)^{2}}=\frac{1}{s-2}-\frac{1}{(s-2)^{2}}
$$

Use table entries 2 and 11:

$$
y(t)=\mathrm{e}^{2 t}-t \mathrm{e}^{2 t}
$$

20. Continuing in the same fashion as before, you should find that

$$
Y(s)=\frac{s}{\left(s^{2}+\omega^{2}\right)\left(s^{2}+4\right)}+\frac{s}{s^{2}+\omega^{2}}
$$

Use Partial Fractions on the first term:

$$
\frac{s}{\left(s^{2}+\omega^{2}\right)\left(s^{2}+4\right)}=\frac{A s+B}{s^{2}+\omega^{2}}+\frac{C s+D}{s^{2}+4}
$$

so that (multiply it out and equate coefficients):

$$
\begin{array}{c|rl}
s^{3} & \begin{array}{rl}
A+C & =0 \\
s^{2} & B+D
\end{array}=0 \\
s & 4 A+C \omega^{2} & =1 \\
\text { const } & 4 B+D \omega^{2} & =0
\end{array} \quad \Rightarrow \quad A=\frac{1}{4-\omega^{2}}, C=-A, B=0, D=0
$$

22. Same idea as before.

$$
Y(s)=\frac{1}{(s+1)\left(s^{2}-2 s+2\right)}+\frac{1}{s^{2}-2 s+2}
$$

Using partial fractions again, get that:

$$
Y(s)=\frac{1 / 5}{s+1}-\frac{1}{5} \cdot \frac{s-3}{s^{2}-2 s+2}+\frac{1}{s^{2}-2 s+2}
$$

Now complete the square in the denominator of the last two terms.
24. For the Laplace transform of the right hand side of the given differential equation, define $f(t)$ as the piecewise defined function. Then:

$$
\int_{0}^{\infty} \mathrm{e}^{-s t} f(t) d t=\int_{0}^{\pi} \mathrm{e}^{-s t} d t+\int_{\pi}^{\infty} 0 d t=-\left.\frac{\mathrm{e}^{-s t}}{s}\right|_{0} ^{\pi}=\frac{1-\mathrm{e}^{-\pi s}}{s}
$$

Therefore, the Laplace transform will be:

$$
Y(s)=\frac{1-\mathrm{e}^{-\pi s}}{s\left(s^{2}+4\right)}+\frac{s}{s^{2}+4}
$$

28.

$$
F^{\prime}(s)=\frac{d}{d s}\left(\int_{0}^{\infty} \mathrm{e}^{-s t} f(t) d t\right)=\int_{0}^{\infty} \frac{d}{d s}\left(\mathrm{e}^{-s t}\right) f(t) d t=\int_{0}^{\infty}-t \mathrm{e}^{-s t} f(t) d t=\mathcal{L}(-t f(t))
$$

29. Use Exercise 28, which in this case is

$$
-\mathcal{L}\left(-t \mathrm{e}^{a t}\right)=-F^{\prime}(s)
$$

where $F(s)=\frac{1}{s-a}$. Therefore,

$$
-\mathcal{L}\left(-t \mathrm{e}^{a t}\right)=\frac{1}{(s-a)^{2}}
$$

As in table entry 11 with $n=1$.
30. Same idea as Exercise 29, except we differentiate twice (a little messy) to get:

$$
\mathcal{L}\left(t^{2} \sin (b t)\right)=\frac{d^{2}}{d s^{2}}\left(\frac{b}{s^{2}+b^{2}}\right)=\frac{d}{d s}\left((-2 b s)\left(s^{2}+b^{2}\right)^{-2}\right)=\frac{6 b s^{2}-2 b^{3}}{\left(s^{2}+b^{2}\right)^{3}}
$$

33. Differentiate table entry 9 with respect to s, then multiply by -1 .
34. This one is a bit tricky (A Challenge Problem!)

$$
\mathcal{L}(g(t))=\int_{0}^{\infty} \mathrm{e}^{-s t}\left[\int_{0}^{t} f(w) d w\right] d t=\int_{0}^{\infty} \int_{0}^{t} \mathrm{e}^{-s t} f(w) d w d t
$$

In the (t, w) plane, we have $0 \leq w \leq t$ and $0 \leq t \leq \infty$. If we reverse the order of integration then $t \geq w$ and $0 \leq w \leq \infty$ (draw it in the ($t, w)$ plane). Therefore,

$$
\int_{0}^{\infty} f(w)\left[\int_{w}^{\infty} \mathrm{e}^{-s t}\right] d t d w=\int_{0}^{\infty} f(w) \frac{\mathrm{e}^{-s w}}{s} d w
$$

which is what we wanted: $\frac{1}{s} \mathcal{L}(f(t))$.

