Section 6.3 Homework Notes

2. To sketch the graph, try first rewriting what is given as a piecewise defined function. The function:

$$
(t-3) u_{2}(t)-(t-2) u_{3}(t)
$$

depends on the value of t :

- If $t<2$, the function is zero, since u_{2} and u_{3} are zero.
- If $2 \leq t<3$, then the function is just $t-3$, since $u_{3}(t)$ is still zero.
- If $t \geq 3$, then the function would be $t-3-(t-2)=-3+2=-1$, since both u_{2} and u_{3} would simplify to 1 .

Now it's easy to graph.
3. Shift the right half of the graph of t^{2} to the right π units.
6. Break it up:

$$
(t-1) u_{1}(t)-2(t-2) u_{2}(t)+(t-3) u_{3}(t)=\left\{\begin{aligned}
0 & \text { if } t<1 \\
(t-1) & \text { if } 1 \leq t<2 \\
(t-1)-2(t-2) & \text { if } 2 \leq t<3 \\
(t-1)-2(t-2)+(t-3) & \text { if } t \geq 3
\end{aligned}\right.
$$

Rewriting this, we get:

$$
=\left\{\begin{aligned}
0 & \text { if } t<0 \\
t-1 & \text { if } 1 \leq t<2 \\
-t+3 & \text { if } 2 \leq t<3 \\
0 & \text { if } t \geq 3
\end{aligned}\right.
$$

8. We could do this one piecemeal:

- Start things off at 1.
- Next, we need to go to -1 (2 units down), so take $1-2 u_{1}(t)$
- Next, get back to 1 (2 units up) at $t=2: 1-2 u_{1}(t)+2 u_{2}(t)$
- At time 3, back to -1 (2 units down): $1-2 u_{1}(t)+2 u_{2}(t)-2 u_{3}(t)$
- At time 4 , back to zero (1 unit up): $1-2 u_{1}(t)+2 u_{2}(t)+2 u_{3}(t)+u_{4}(t)$

Alternative: Use the on-off switch and simplify:

$$
\left(1-u_{1}(t)\right)-\left(u_{1}-u_{2}(t)\right)+\left(u_{2}(t)-u_{3}(t)\right)-\left(u_{3}(t)-u_{4}(t)\right)
$$

11. In this case, best to use the on-off switch and simplify:

$$
t\left(1-u_{1}(t)\right)+(t-1)\left(u_{1}(t)-u_{2}(t)\right)+(t-2)\left(u_{2}(t)-u_{3}(t)\right)=t-u_{1}(t)-u_{2}(t)-(t-2) u_{3}(t)
$$

14. To use the table, we need that:

$$
u_{1}(t) f(t-1)=u_{1}(t)\left(t^{2}-2 t+2\right)
$$

so that $f(t-1)=t^{2}-2 t+2$. This means that

$$
f(t)=(t+1)^{2}-2(t+1)+2=t^{2}+2 t+1-2 t-2+2=t^{2}+1
$$

Now the table entry says:

$$
\begin{array}{c|c}
f(t) & F(s) \\
\hline u_{c}(t) f(t-c) & \mathrm{e}^{-s c} F(s)
\end{array}
$$

so we see that

$$
F(s)=\mathcal{L}\left(t^{2}+1\right)=\frac{2}{s^{3}}+\frac{1}{s}
$$

so that our final answer is: $\mathrm{e}^{-s}\left(\frac{2}{s^{3}}+\frac{1}{s}\right)$
15. Same idea as 14 :

$$
f(t)=(t-\pi)\left(u_{\pi}(t)-u_{2 \pi}(t)\right)=(t-\pi) u_{\pi}(t)-(t-\pi) u_{2 \pi}(t)
$$

Inverting term by term, the first is:

$$
u_{\pi}(t)(t-\pi)=u_{\pi}(t) g(t-\pi) \quad \Rightarrow \quad g(t)=t \quad \Rightarrow \quad \frac{\mathrm{e}^{-\pi s}}{s^{2}}
$$

and for the second term, think of

$$
u_{2 \pi}(t)(t-\pi)=u_{\pi}(t) g(t-2 \pi) \quad \Rightarrow \quad g(t)=t+\pi \quad \Rightarrow \frac{\mathrm{e}^{-2 \pi s}}{s^{2}}+\frac{\pi \mathrm{e}^{-2 \pi s}}{s}
$$

19. Use Table Entry 11.
20. Find the inverse Laplace transform of

$$
F(s)=\mathrm{e}^{-2 s} \cdot \frac{1}{s^{2}+s-2}
$$

This is of the form $\mathrm{e}^{-s c} F(s)$, so we need to find the inverse transform of $1 /\left(s^{2}+s-2\right)$. We'll do this by Partial Fraction Decomposition. This F refers to the table, not the original F :

$$
F(s)=\frac{1}{s^{2}+s-2}=\frac{A}{s+2}+\frac{B}{s-1}=-\frac{1}{3} \frac{1}{s+2}+\frac{1}{3} \frac{1}{s-1}
$$

and

$$
f(t)=-\frac{1}{3} \mathrm{e}^{-2 t}+\frac{1}{3} \mathrm{e}^{t}
$$

So our overall answer is $u_{2}(t) f(t-2)$, or:

$$
u_{2}(t)\left(-\frac{1}{3} \mathrm{e}^{-2(t-2)}+\frac{1}{3} \mathrm{e}^{t-2}\right)
$$

21. Find the inverse Laplace transform of

$$
G(s)=\frac{2 \mathrm{e}^{-2 s}(s-1)}{s^{2}-2 s+2}
$$

(I changed the notation of the original function so as not to confuse $F(s)$ in the table with $F(s)$ in the original question).
We will rewrite this expression, keeping the table in mind:

$$
G(s)=2 \mathrm{e}^{-2 s} \frac{s-1}{s^{2}-2 s+2}=2 \mathrm{e}^{-2 s} \frac{s-1}{(s-1)^{2}+1}=2 \mathrm{e}^{-s c} F(s)
$$

We see that, given this $F(s)$, then $f(t)=\mathrm{e}^{t} \cos (t)$ and our overall inverse Laplace transform is:

$$
2 u_{2}(t) f(t-2)=2 u_{2}(t) \mathrm{e}^{t-2} \cos (t-2)
$$

25. Good practice to work from the definition, and also to look at where we want to go: We want to show that

$$
\mathcal{L}(f(c t))=\int_{0}^{\infty} \mathrm{e}^{-s t} f(c t) d t=\frac{1}{c} \int_{0}^{\infty} \mathrm{e}^{-s / c} f(w) d w
$$

So, it looks like we want to do a substitution: $w=c t$, so $d w=c d t$ and $d t=\frac{1}{c} d w$.
For part (b), use part (a)-

$$
f(c t)=\mathcal{L}^{-1}\left(\frac{1}{c} F(s / c)\right) \Rightarrow c f(c t)=\mathcal{L}^{-1}(F(s / c))
$$

Then let $c=\frac{1}{k}$.
For part (c), use these ideas:

- From part (b), $\mathcal{L}^{-1}(F(a s))=\frac{1}{a} f(t / a)$
- Note that $a s+b=a(s+b / a)$
- Use the table to see that $\mathcal{L}\left(\mathrm{e}^{c t} f(t)\right)=F(s-c)$

27. We want to try to use the result of Exercise 25 to solve this one, so put it in the form $F(s)=G(a s+b)$.

$$
F(s)=\frac{2 s+1}{4 s^{2}+4 s+5}=\frac{2 s+1}{\left(4 s^{2}+4 s+1\right)+4}=\frac{2 s+1}{(2 s+1)^{2}+4}=G(2 s+1)
$$

where $G(s)=\frac{s}{s^{2}+4}$ and so $g(t)=\cos (2 t)$. Using the results of 25 , with $a=2$ and $b=1$,

$$
\mathcal{L}^{-1}(G(2 s+1))=\frac{1}{2} \mathrm{e}^{-t / 2} \cos (2 t / 2)=\frac{1}{2} \mathrm{e}^{-t / 2} \cos (t)
$$

28. Similar to 27-Put this in the form $G(a s+b)$. We might note that $(3 s-2)^{2}=9 s^{2}-12 s+4$. Therefore,

$$
\frac{1}{9 s^{2}-12 s+3}=\frac{1}{(3 s-2)^{2}-1}=G(3 s-2)
$$

so that $G(s)=1 /\left(s^{2}-1\right)$ and $g(t)=\sinh (t)$ (You can use the hyperbolic functions from the table).
Therefore, with $a=3$ and $b=-2$,

$$
\mathcal{L}^{-1}(G(3 s-2))=\frac{1}{3} \mathrm{e}^{2 t / 3} \sinh (t / 3)
$$

32. For this problem, we'll need to have a sum for a finite geometric series. Here's one way to get that formula:

$$
\begin{aligned}
S & =1+r+r^{2}+\cdots+r^{m} \\
r S & =r+r^{2}+\cdots+r^{m+1}
\end{aligned} \quad \Rightarrow \quad S=\frac{1-r^{m+1}}{1-r}
$$

Now, back to the text. Note that, if $t>0$, then $u_{0}(t)=1$.
The Laplace transform is a linear operator, so:
$\mathcal{L}\left(\sum_{k=0}^{2 n+1}(-1)^{k} u_{k}(t)\right)=\sum_{k=0}^{2 n+1}(-1)^{k} \mathcal{L}\left(u_{k}(t)\right)=\sum_{k=0}^{2 n+1}(-1)^{k} \frac{\mathrm{e}^{-k s}}{s}=\frac{1}{s} \sum_{k=0}^{2 n+1}\left(-\mathrm{e}^{-s}\right)^{k}=\frac{1}{s} \cdot \frac{1-\left(-\mathrm{e}^{-s}\right)^{2 n+2}}{1+\mathrm{e}^{-s}}$
This reminds us of a geometric series
33. Pretty much the same idea as 32 , except we take the infinite sum:

$$
\mathcal{L}\left(\sum_{k=0}^{\infty}(-1)^{k} u_{k}(t)\right)=\sum_{k=0}^{\infty}(-1)^{k} \mathcal{L}\left(u_{k}(t)\right)=\sum_{k=0}^{\infty}(-1)^{k} \frac{\mathrm{e}^{-k s}}{s}
$$

This reminds us of a geometric series with $r=-\mathrm{e}^{-s}$ (except now it is an infinite sum.
35. Use the results of Problem 34- If f is periodic with period T, then

$$
\mathcal{L}(f(t))=\frac{\int_{0}^{T} \mathrm{e}^{-s t} f(t) d t}{1-\mathrm{e}^{-s T}}
$$

In this case, $T=2$, and

$$
\int_{0}^{2} \mathrm{e}^{-s t} f(t) d t=\int_{0}^{1} \mathrm{e}^{-s t} d t=-\left.\frac{1}{s} \mathrm{e}^{-s t}\right|_{0} ^{1}=-\frac{\mathrm{e}^{-s}}{s}+\frac{1}{s}=\frac{1}{s}\left(1-\mathrm{e}^{-s}\right)
$$

Put this into the formula:

$$
\mathcal{L}(f(t))=\frac{\frac{1}{s}\left(1-\mathrm{e}^{-s}\right)}{1-\mathrm{e}^{-2 s}}
$$

This may not seem to be the same answer as in Problem 33; However note that:

$$
1-\mathrm{e}^{-2 s}=1^{2}-\left(\mathrm{e}^{-s}\right)^{2}=\left(1-\mathrm{e}^{-s}\right)\left(1+\mathrm{e}^{-s}\right)
$$

