
Exam 2 Summary

Notes

The exam will cover material from Section 3.1 to 3.8. We did not get to the last part of 3.8 (damping and
forcing), so it will not be on the exam (but the part on beating and resonance may be).

There are two sets of formulas that will be provided- One is the system of equations from which we get
the Variation of Parameters. The second is the cosine sum formula used in the two trig review handouts.

Structure and Theory (Mostly 3.2)

The goal of the theory was to establish the structure of solutions to the second order IVP:

y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0

We saw that two functions form a fundamental set of solutions to the homogeneous DE if the Wronskian is
not zero at t0.

1. Vocabulary: Linear operator, general solution,
fundamental set of solutions, linear combina-
tion of a set of functions.

2. Theorems:

• The Existence and Uniqueness Theorem
for y′′ + p(t)y′ + q(t)y = g(t).

• Principle of Superposition.

• Abel’s Theorem.

If y1, y2 are solutions to y′′ + p(t)y′ +
q(t)y = 0, then the Wronskian, W (y1, y2),
is either always zero or never zero on the
interval for which the solutions are valid.

That is because the Wronskian may be
computed as:

W (y1, y2)(t) = Ce−
∫
p(t) dt

• The Fundamental Set of Solutions: y′′ +
p(t)y′ + q(t)y = 0

We can guarantee that we can always find
a fundamental set of solutions (where p, q
are continuous). We did that by appealing
to the Existence and Uniqueness Theorem
for the following two initial value prob-
lems:

– y1 solves y′′ + p(t)y′ + q(t)y = 0 with
y(t0) = 1, y′(t0) = 0

– y2 solves y′′ + p(t)y′ + q(t)y = 0 with
y(t0) = 0, y′(t0) = 1

3. The Structure of Solutions to y′′ + p(t)y′ +
q(t)y = g(t), y(t0) = y0, y

′(t0) = v0

Given a fundamental set of solutions to the ho-
mogeneous equation, y1, y2, then there is a so-
lution to the initial value problem, written as:

y(t) = C1y1(t) + C2y2(t) + yp(t)

where yp(t) solves the non-homogeneous equa-
tion.

In fact, if we have:

y′′ + p(t)y′ + q(t)y = g1(t) + g2(t) + . . .+ gn(t),

we can solve by splitting the problem up into
smaller problems:

• y1, y2 form a fundamental set of solutions
to the homogeneous equation.

• yp1 solves y′′ + p(t)y′ + q(t)y = g1(t)

• yp2 solves y′′ + p(t)y′ + q(t)y = g2(t)

and so on..

• ypn solves y′′ + p(t)y′ + q(t)y = gn(t)

and the full solution is:

y(t) = C1y1 + C2y2 + yp1 + yp2 + . . .+ ypn

1



Finding the Homogeneous Solution

We had two distinct equations to solve-

ay′′ + by′ + cy = 0 or y′′ + p(t)y′ + q(t)y = 0

First we look at the case with constant coefficients, then we look at the more general case.

Constant Coefficients

To solve

ay′′ + by′ + cy = 0

we use the ansatz y = ert. Then we form the asso-
ciated characteristic equation:

ar2 + br + c = 0 ⇒ r =
−b±

√
b2 − 4ac

2a

so that the solutions depend on the discriminant,
b2 − 4ac in the following way:

• b2 − 4ac > 0 ⇒ two distinct real roots r1, r2.
The general solution is:

yh(t) = c1er1t + c2er2t

If a, b, c > 0 (as in the Spring-Mass model) we
can further say that r1, r2 are negative. We
would say that this system is OVERDAMPED.

• b2 − 4ac = 0⇒ one real root r = −b/2a. Then
the general solution is:

yh(t) = e−(b/2a)t (C1 + C2t)

If a, b, c > 0 (as in the Spring-Mass model), the
exponential term has a negative exponent. In
this case (one real root), the system is CRITI-
CALLY DAMPED.

• b2 − 4ac < 0 ⇒ two complex conjugate solu-
tions, r = α± iβ. Then the solution is:

yh(t) = eαt (C1 cos(βt) + C2 sin(βt))

If a, b, c > 0, then α = −(b/2a) < 0. In the
case of complex roots, the system is said to the
UNDERDAMPED. If α = 0 (this occurs when
there is no damping), we get pure periodic mo-
tion, with period 2π/β or circular frequency β.

Solving the more general case

We had two methods for solving the more general
equation:

y′′ + p(t)y′ + q(t)y = 0

but each method relied on already having one solu-
tion, y1(t). Given that situation, we can solve for y2
(so that y1, y2 form a fundamental set), by one of two
methods:

• By use of the Wronskian: There are two ways
to compute this,

– W (y1, y2) = Ce−
∫
p(t) dt (This is from

Abel’s Theorem)

– W (y1, y2) = y1y
′
2 − y2y′1

Therefore, these are equal, and y2 is the un-

known: y1y
′
2 − y2y′1 = Ce−

∫
p(t) dt

• Reduction of order, where y2 = v(t)y1(t). Now
substitute y2 into the DE, and use the fact that
y1 solves the homogeneous equation, and the
DE reduces to:

y1v
′′ + (2y′1 + py1)v′ = 0

Special Case: Euler Equations

Given the Euler equation:

t2y′′ + αty′ + βy = 0

we can get the homogeneous part of the solution by
using the ansatz y = tr. The characteristic equation
is r(r − 1) + αr + β = 0, and the solution is one of
three:

• Two real values of r: yh(t) = C1t
r1 + C2t

r2

• One real value of r: yh(t) = tr(C1 + C2 ln(t))

• Complex values of r = λ± γi:

yh(t) = tλ (C1 cos(γ ln(t)) + C2 sin(γ ln(t)))
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Finding the particular solution.

Our two methods were: Method of Undetermined Coefficients and Variation of Parameters.

Method of Undetermined Coefficients

This method is motivated by the observation that, a linear operator of the form L(y) = ay′′+by′+cy, acting
on certain classes of functions, returns the same class. In summary, the table from the text:

if gi(t) is: The ansatz ypi is:
Pn(t) ts(a0 + a1t+ . . . ant

n)
Pn(t)eαt tseαt(a0 + a1t+ . . .+ ant

n)
Pn(t)eαt sin(µt) or cos(µt) tseαt ((a0 + a1t+ . . .+ ant

n) sin(µt)
+ (b0 + b1t+ . . .+ bnt

n) cos(µt))

The ts term comes from an analysis of the homogeneous part of the solution. That is, multiply by t or t2 so
that no term of the ansatz is included as a term of the homogeneous solution.

• Variation of Parameters: Given y′′ + p(t)y′ +
q(t)y = g(t), with y1, y2 solutions to the homo-
geneous equation, we write the ansatz for the
particular solution as:

yp = u1y1 + u2y2

From our analysis, we saw that u1, u2 were re-
quired to solve:

u′1y1 + u′2y2 = 0
u′1y
′
1 + u′2y

′
2 = g(t)

(these equations will be provided on any exam
or quiz) From which we get the formulas for u′1
and u′2:

u′1 =
−y2g

W (y1, y2)
u′2 =

y1g

W (y1, y2)

• We did look at a third case in the homework,
where we only had one solution to the homoge-
neous equation, then we used reduction of or-
der. I won’t ask you to do that on the exam.

Analysis of the Oscillator Model

Given
mu′′ + γu′ + ku = F (t)

we should be able to determine the constants from a
given setup for a spring-mass system.

1. Unforced (F (t) = 0)

(a) No damping: Natural frequency is
√
k/m

(b) With damping: Underdamped, Critically
Damped, Overdamped

2. Forced

(a) With no damping, and periodic forcing:
Determine when Beating and Resonance
occur.

u′′ + ω2u = F cos(ω0t)

“Beating” occurs when ω is close to ω0.

“Resonance” occurs when ω = ω0.

(b) With damping (Last part of 3.8, we did
not get to this, so it will not be on the
exam).

Other Material

1. Be familiar with complex numbers, their polar form, and basic operations using complex numbers.

2. Know and use Euler’s Formula: eiθ = cos(θ) + i sin(θ).

3



Formula Page

• In physics, we estimate the acceleration due to gravity as 9.8 meters per sec2 (9.8= 49
5 , which may be

easier to work with by hand), or as 32 feet per sec2.

• For Variation of Parameters, the system of equations was:

u′1y1 + u′2y2 = 0
u′1y
′
1 + u′2y

′
2 = g(t)

• For the trig identities, we considered:

A cos(ωt) +B sin(ωt) = R cos(ωt− δ)

(Know how to compute R and δ).

And the cosine formula:

cos(A) + cos(B) = 2 cos

(
B −A

2

)
cos

(
A+B

2

)

cos(A)− cos(B) = 2 sin

(
B −A

2

)
sin

(
A+B

2

)
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