Homework (M 244): To Replace 7.1/7.2

1. Exercise 22 (Section 7.1, p 363)
2. Exercise 1, 4, 22, 23 (Section 7.2, p. 371-373)

For Exercises 3-8 below, define

$$
A=\left[\begin{array}{rr}
1 & 2 \\
-1 & 1
\end{array}\right] \quad \boldsymbol{b}=\left[\begin{array}{r}
-1 \\
1
\end{array}\right] \quad B=\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right]
$$

and I is the identity matrix:
3. Compute $(B-4 I) \boldsymbol{b}$
6. Compute $A^{-1} \boldsymbol{b}$
4. Compute $\operatorname{det}(B-4 I)$
7. Verify: $A \boldsymbol{b}-3 \boldsymbol{b}=(A-3 I) \boldsymbol{b}$
5. Are $A B$ and $B A$ the same?
8. Compute $B^{T} B, \operatorname{Tr}(A)$, and $\operatorname{Tr}(B)$
9. Short Answer:
(a) Is every second order linear homogeneous differential equation (with constant coefficients) equivalent to a system of first order equations?
(b) Can every 2×2 system of DEs be converted into an equivalent second order system? (Hint: To do our technique, what must be true?)
10. Give the solution to each system. If it has an infinite number of solutions, give your answer in vector form:

$$
\begin{array}{rlll}
3 x+2 y=1 & 3 x+2 y=1 & 3 x+2 y=1 \\
2 x-y=3 & 6 x+4 y=3 & 6 x+4 y=2
\end{array}
$$

11. Write each of the previous systems in matrix-vector form. Verify that the determinant of the first matrix is not zero, but is zero for the second and third.
12. Write each system of differential equations in matrix-vector form or write the system from the matrix-vector form:

$$
\begin{array}{ll}
x_{1}^{\prime} & =3 x_{1}-x_{2} \\
x_{2}^{\prime} & =9 x_{1}-3 x_{2}
\end{array} \quad \mathbf{x}^{\prime}=\left[\begin{array}{rr}
-1 & 2 \\
2 & 1
\end{array}\right] \mathbf{x}
$$

13. Find the equilibrium solutions to the previous autonomous linear differential equations:
14. If \mathbf{x} is as defined below, compute $\mathbf{x}^{\prime}(t)$, and $\int_{0}^{1} \mathbf{x}(t) d t$:

$$
\mathbf{x}(t)=\left[\begin{array}{c}
t^{2}-3 \\
3 \mathrm{e}^{t}-2 \mathrm{e}^{3 t}
\end{array}\right]
$$

15. If $\mathbf{y}(t)=A(t) \mathbf{c}$ is as defined below, compute $\mathbf{y}^{\prime}(t)$, and $\int_{0}^{1} \mathbf{y}(t) d t$. Are these the same as $A^{\prime}(t) \mathbf{c}$ and $\int A(t) d t \mathbf{c} ?$

$$
\mathbf{y}(t)=\left[\begin{array}{ll}
t & 2 t \\
1 & \sin (t)
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1}
\end{array}\right]
$$

16. Solve the system of equations given by first converting it into a second order linear ODE (then use Chapter 3 methods):
(a) $\mathbf{x}^{\prime}=\left[\begin{array}{rr}-2 & 1 \\ 1 & -2\end{array}\right] \mathbf{x}$
(b) $\mathbf{x}^{\prime}=\left[\begin{array}{rr}0 & 2 \\ -2 & 0\end{array}\right] \mathbf{x}$
17. Convert the following second order differential equations into a system of autonomous, first order equations. Using methods from Chapter 3, give the solution to the system. An example follows before the exercises:

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

SOLUTION: We'll get the homogenous solution first. The roots to the characteristic equation are $-1,-2$. The general solution is:

$$
y=C_{1} \mathrm{e}^{-t}+C_{2} \mathrm{e}^{-2 t}
$$

To get an equivalent system, let $x_{1}=y$ and $x_{2}=y^{\prime}$. Then

$$
x_{1}^{\prime}=y^{\prime}=x_{2} \quad x_{2}^{\prime}=y^{\prime \prime}=-2 y-3 y^{\prime}=-2 x_{1}-3 x_{2}
$$

so the system is (in matrix-vector form):

$$
\mathbf{x}=\left[\begin{array}{rr}
0 & 1 \\
-2 & -3
\end{array}\right] \mathbf{x}
$$

Since $x_{1}=y$, then $x_{1}=C_{1} \mathrm{e}^{-t}+C_{2} \mathrm{e}^{-2 t}$. Since $x_{2}=y^{\prime}$, then $x_{2}=$ $-C_{1} \mathrm{e}^{-t}-2 C_{2} \mathrm{e}^{-2 t}$. In vector form, this means our solution is:

$$
\mathbf{x}=C_{1} \mathrm{e}^{-t}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]+C_{2} \mathrm{e}^{-2 t}\left[\begin{array}{r}
1 \\
-2
\end{array}\right]
$$

Here we go:
(a) $y^{\prime \prime}+4 y^{\prime}+3 y=0$
(c) $y^{\prime \prime}+4 y=0$
(b) $y^{\prime \prime}+5 y^{\prime}=0$
(d) $y^{\prime \prime}-2 y^{\prime}+y=0$

