Complex Integrals and the Laplace Transform

There are a few computations for which the complex exponential is very nice to use. Before
we get too much farther, here are some facts about integrating expressions that involve #:
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Theorem: /e(b’)t dt = —e®?
i
Proof: To prove this, we use Euler’s Formula to put the new integral in terms of the usual
real integral:

/ L — / cos(bt) + isin(bt) dt = / cos(bt) dt + 1 / sin(bt) dt =

sin(bt) — i cos(bt)
b

) :
5 sin(bt) — %cos(bt) =

And
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Therefore, these quantities are the same.

Theorem: /e(‘”bi)t dt = #e(aﬂn‘)t
(a + bi)
You can work this out, but it is more complicated since we’ll need to do integration by parts

twice for each integral. It is a nice exercise to try out when you have a little time.

Theorem: The main computational technique is using the following:

/e“t cos(bt) dt = Re (/ platbit dt) — Re (e(a-i-zb)t)

a+1b

/e“t sin(bt) dt = Im (/ elatbilt dt> =Im <‘e(“+w)t>
a+1b

Worked Example:
1. Use complex exponentials to compute / e? cos(3t) dt.
SOLUTION: We note that e cos(3t) = Re(e+3)%)  so:

1 .
2t 3t)dt = R < (2+3z)t>
/e cos(3¢) “\2+3i°

Simplifying the term inside the parentheses and multiplying out the complex terms:

ot <ijr?g> (cos(3t) + i sin(3t)) =

o2t [(123 cos(3t) + 133 sim(St)) +1 (—133 cos(3t) + 123 sin(St))}



Therefore,

2 3
2t 2t 3
/e cos(3t)dt = e <13 cos(3t) + 13 Sln(3t)>

In fact, we get the other integral for free:

— 2
/e% sin(3t) dt = e* (1;:) cos(3t) + G sin(3t)>

. Use complex exponentials to compute / sin(at) dt

This one is simple enough to do without using complex exponentials, but it does still
work.

/sin(at) dt = Im (/ elat)i dt) = Im (1,(cos(at) + z'sin(at)) =

a?

Im (_i(cos(at) + isin(at))> =Im (Cll sin(at) + 4 (_al cos(at))) — — cos(at)

a a

. Use complex exponentials to compute the Laplace transform of cos(at):
SOLUTION: Note that cos(at) = Re(e(®)?)

L(cos(at)) = /OOO e * cos(at) dt = Re </Ooo e~ steladt dt) =

Re </ e—(s—az)t dt) — Re ( : e—(s—az)t
0 (s — ai)

What happens to our expression as t — oo? The easiest way to take the limit is to
check the magnitude (see if it is going to zero):
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Now, the first term is a constant and e() is a point on the unit circle (so its magnitude
is 1). Therefore, the magnitude depends solely on e™*, where s is any real number.

And, the function e™*" — 0 as t — oo for any s > 0. Therefore,

lim ———e (-t —
t—oo (s — ai)

and the Laplace transform is:

-1 s+ ar S
L(cos(at)) = Re (O s ai) = Re (32 + a2> T 21a?

As a side remark, we get the Laplace transform of sin(at) for free since it is the
imaginary part.




Homework Addition to Section 6.1

1.

2.
3.

Use complex exponentials to compute / e ' sin(3t) dt.

Use complex exponentials to compute the Laplace transform of sin(at).

Use complex exponentials to compute the Laplace transform of e* sin(bt) and e* cos(bt)
(compare to exercises 13, 14).

Prove that e’ goes to infinity faster than any polynomial. You can do that by showing

tn
lim — =0
t—oo et

. We can show that f(z) < g(x) for all z > a by proving two things: (i) f(a) < g(a),

and (ii) f'(x) < ¢'(z) for all > a. Use this idea to prove that In(¢) < ¢ for all ¢t > 1
(it is true for all £ > 0, but we wouldn’t be able to use this argument for 0 < ¢ < 1).

Show that, if f(¢) is bounded (that is, there is a constant A so that |f(t)] < A for all
t), then f is of exponential order (do this by finding K, a and M from the definition).

If the function is of exponential order, find the K, a and M from the definition.
Otherwise, state that it is not of exponential order.

Something that may be handy from algebra: A = e™(4),

(a) sin(t) (d) e’
(b) tan(t) (e) 5
(c) £ (f) ¢

Use complex exponentials to find the Laplace transform of ¢sin(at).



