Complex Integrals and the Laplace Transform

There are a few computations for which the complex exponential is very nice to use. We'll see a few here, but first a couple of Theorems about integrating a complex function:

Theorem: $\int \mathrm{e}^{(b i) t} d t=\frac{1}{b i} \mathrm{e}^{(b i) t}$
Proof:

$$
\begin{gathered}
\int \mathrm{e}^{(b i) t} d t=\int \mathrm{e}^{(b t) i} d t=\int \cos (b t)+i \sin (b t) d t=\int \cos (b t) d t+i \int \sin (b t) d t= \\
\frac{1}{b} \sin (b t)-\frac{i}{b} \cos (b t)=\frac{\sin (b t)-i \cos (b t)}{b}
\end{gathered}
$$

And

$$
\frac{1}{b i} \mathrm{e}^{(b t) i}=\frac{\cos (b t)+i \sin (b t)}{b i} \cdot \frac{i}{i}=\frac{-\sin (b t)+i \cos (b t)}{-b}=\frac{\sin (b t)-i \cos (b t)}{b}
$$

Therefore, these quantities are the same.
Theorem: $\int \mathrm{e}^{(a+b i) t} d t=\frac{1}{(a+b i)} \mathrm{e}^{(a+b i) t}$
You can work this out, but it is more complicated since we'll need to do integration by parts twice for each integral. It is a nice exercise to try out when you have a little time.

Theorem: The main computational technique is using the following:

$$
\begin{aligned}
& \int \mathrm{e}^{a t} \cos (b t) d t=\operatorname{Re}\left(\int \mathrm{e}^{(a+b i) t} d t\right)=\operatorname{Re}\left(\frac{1}{a+i b} \mathrm{e}^{(a+i b) t}\right) \\
& \int \mathrm{e}^{a t} \sin (b t) d t=\operatorname{Im}\left(\int \mathrm{e}^{(a+b i) t} d t\right)=\operatorname{Im}\left(\frac{1}{a+i b} \mathrm{e}^{(a+i b) t}\right)
\end{aligned}
$$

Worked Example:

1. Use complex exponentials to compute $\int \mathrm{e}^{2 t} \cos (3 t) d t$.

SOLUTION: We note that $\mathrm{e}^{2 t} \cos (3 t)=\operatorname{Re}\left(\mathrm{e}^{(2+3 i) t}\right)$, so:

$$
\int \mathrm{e}^{2 t} \cos (3 t) d t=\operatorname{Re}\left(\frac{1}{2+3 i} \mathrm{e}^{(2+3 i) t}\right)
$$

Simplifying the term inside the parentheses and multiplying out the complex terms:

$$
\begin{gathered}
\mathrm{e}^{2 t}\left(\frac{2-3 i}{4+9}\right)(\cos (3 t)+i \sin (3 t))= \\
\mathrm{e}^{2 t}\left[\left(\frac{2}{13} \cos (3 t)+\frac{3}{13} \sin (3 t)\right)+i\left(-\frac{3}{13} \cos (3 t)+\frac{2}{13} \sin (3 t)\right)\right]
\end{gathered}
$$

Therefore,

$$
\int \mathrm{e}^{2 t} \cos (3 t) d t=\mathrm{e}^{2 t}\left(\frac{2}{13} \cos (3 t)+\frac{3}{13} \sin (3 t)\right)
$$

In fact, we get the other integral for free:

$$
\int \mathrm{e}^{2 t} \sin (3 t) d t=\mathrm{e}^{2 t}\left(\frac{-3}{13} \cos (3 t)+\frac{2}{13} \sin (3 t)\right)
$$

2. Use complex exponentials to compute $\int \sin (a t) d t$

This one is simple enough to do without using complex exponentials, but it does still work.

$$
\begin{gathered}
\int \sin (a t) d t=\operatorname{Im}\left(\int \mathrm{e}^{(a t) i} d t\right)=\operatorname{Im}\left(\frac{1}{a i}(\cos (a t)+i \sin (a t))=\right. \\
\operatorname{Im}\left(\frac{-i}{a}(\cos (a t)+i \sin (a t))\right)=\operatorname{Im}\left(\frac{1}{a} \sin (a t)+i\left(\frac{-1}{a} \cos (a t)\right)\right)=\frac{-1}{a} \cos (a t)
\end{gathered}
$$

3. Use complex exponentials to compute the Laplace transform of $\cos (a t)$:

SOLUTION: Note that $\cos (a t)=\operatorname{Re}\left(\mathrm{e}^{(a t) i}\right)$

$$
\begin{gathered}
\mathcal{L}(\cos (a t))=\int_{0}^{\infty} \mathrm{e}^{-s t} \cos (a t) d t=\operatorname{Re}\left(\int_{0}^{\infty} \mathrm{e}^{-s t} \mathrm{e}^{(a i) t} d t\right)= \\
\operatorname{Re}\left(\int_{0}^{\infty} \mathrm{e}^{-(s-a i) t} d t\right)=\operatorname{Re}\left(\left.\frac{-1}{(s-a i)} \mathrm{e}^{-(s-a i) t}\right|_{t=0} ^{t \rightarrow \infty}\right.
\end{gathered}
$$

What happens to our expression as $t \rightarrow \infty$? The easiest way to take the limit is to check the magnitude (see if it is going to zero):

$$
\left|\frac{-1}{s-a i} \mathrm{e}^{-s t} \mathrm{e}^{(a i) t}\right|=\left|\frac{-1}{s-a i}\right| \cdot\left|\mathrm{e}^{-s t}\right| \cdot\left|\mathrm{e}^{(a i) t}\right|
$$

Now, the first term is a constant and $\mathrm{e}^{(a t) i}$ is a point on the unit circle (so its magnitude is 1). Therefore, the magnitude depends solely on $\mathrm{e}^{-s t}$, where s is any real number.
And, the function $\mathrm{e}^{-s t} \rightarrow 0$ as $t \rightarrow \infty$ for any $s>0$. Therefore,

$$
\lim _{t \rightarrow \infty} \frac{-1}{(s-a i)} \mathrm{e}^{-(s-a i) t}=0
$$

and the Laplace transform is:

$$
\mathcal{L}(\cos (a t))=\operatorname{Re}\left(0-\frac{-1}{s-a i}\right)=\operatorname{Re}\left(\frac{s+a i}{s^{2}+a^{2}}\right)=\frac{s}{s^{2}+a^{2}}
$$

As a side remark, we get the Laplace transform of $\sin (a t)$ for free since it is the imaginary part.

Homework Addition to Section 6.1

1. Use complex exponentials to compute $\int \mathrm{e}^{-2 t} \sin (3 t) d t$.
2. Use complex exponentials to compute the Laplace transform of $\sin (a t)$.
3. Use complex exponentials to compute the Laplace transform of $\mathrm{e}^{a t} \sin (b t)$ and $\mathrm{e}^{a t} \cos (b t)$ (compare to exercises 13,14).
4. Show that, if $f(t)$ is bounded (that is, there is a constant A so that $|f(t)| \leq A$ for all t), then f is of exponential order (do this by finding K, a and M from the definition).
5. If the function is of exponential order, find the K, a and M from the definition. Otherwise, state that it is not of exponential order.
Something that may be handy from algebra: $A=\mathrm{e}^{\ln (A)}$.
(a) $\sin (t)$
(d) $e^{t^{2}}$
(b) $\tan (t)$
(e) 5^{t}
(c) t^{3}
(f) t^{t}
6. Use complex exponentials to find the Laplace transform of $t \sin (a t)$.

Homework Addition Solutions

1. Use complex exponentials to compute $\int \mathrm{e}^{-2 t} \sin (3 t) d t$.

SOLUTION:

$$
\begin{gathered}
\int \mathrm{e}^{-2 t} \sin (3 t) d t=\int \operatorname{Im}\left(\mathrm{e}^{(-2+3 i) t} d t\right)=\operatorname{Im}\left(\frac{1}{-2+3 i} \mathrm{e}^{(-2+3 i) t}\right)= \\
\operatorname{Im}\left(\left[-\frac{2}{13}-\frac{3}{13} i\right] \cdot\left(\mathrm{e}^{-2 t} \cos (3 t)+i \mathrm{e}^{-2 t} \sin (3 t)\right)=-\frac{3}{13} \mathrm{e}^{-2 t} \cos (3 t)-\frac{2}{13} \mathrm{e}^{-2 t} \sin (3 t)\right.
\end{gathered}
$$

2. Use complex exponentials to compute the Laplace transform of $\sin (a t)$.

SOLUTION:

$$
\mathcal{L}(\sin (a t))=\int_{0}^{\infty} \mathrm{e}^{-s t} \sin (a t) d t
$$

Ignoring the bounds for a bit,

$$
\begin{gathered}
\operatorname{Im}\left(\int \mathrm{e}^{(-s+a i) t} d t\right)=\operatorname{Im}\left(\frac{1}{-s+a i} \mathrm{e}^{(-s+a i) t}\right)= \\
\quad \operatorname{Im}\left([- \frac { s } { s ^ { 2 } + a ^ { 2 } } - \frac { a } { s ^ { 2 } + a ^ { 2 } } i] \cdot \left(\left.\mathrm{e}^{(-s+a i) t}\right|_{t=0} ^{t \rightarrow \infty}\right.\right.
\end{gathered}
$$

As we showed earlier, if $t \rightarrow \infty$, then

$$
\mathrm{e}^{-(s-a i) t}=\mathrm{e}^{-s t} \mathrm{e}^{(a t) i} \rightarrow 0
$$

as long as $s>0$ (because $\left|\mathrm{e}^{(a t) i}\right|=1$). Therefore,

$$
\mathcal{L}(\sin (a t))=0--\frac{a}{s^{2}+a^{2}}=\frac{a}{s^{2}+a^{2}}
$$

3. Use complex exponentials to compute the Laplace transform of $\mathrm{e}^{a t} \sin (b t)$ and $\mathrm{e}^{a t} \cos (b t)$ (compare to exercises 13,14).
SOLUTION: This is very much the same analysis as before, except that

$$
\begin{gathered}
\mathcal{L}\left(\mathrm{e}^{a t} \cos (b t)\right)+i \mathcal{L}\left(\mathrm{e}^{a t} \sin (b t)\right)=\mathcal{L}\left(\mathrm{e}^{(a+b i) t}\right)=\int_{0}^{\infty} \mathrm{e}^{-s t} \mathrm{e}^{(a+b i) t} d t= \\
\int_{0}^{\infty} \mathrm{e}^{-((s-a)-b i) t} d t=\left(-\left.\frac{1}{(s-a)-b i} \mathrm{e}^{-((s-a)-b i) t}\right|_{0} ^{t \rightarrow \infty}\right.
\end{gathered}
$$

As $t \rightarrow \infty$, the exponential term will go to zero as long as $s-a>0$, or $s>a$. If that is true, then we have:

$$
=\frac{1}{(s-a)-b i}=\frac{s-a}{(s-a)^{2}+b^{2}}+\frac{b}{(s-a)^{2}+b^{2}} i
$$

From this, we get:

$$
\mathcal{L}\left(\mathrm{e}^{a t} \cos (b t)\right)=\frac{s-a}{(s-a)^{2}+b^{2}} \quad \mathcal{L}\left(\mathrm{e}^{a t} \sin (b t)\right)=\frac{b}{(s-a)^{2}+b^{2}}
$$

4. Show that, if $f(t)$ is bounded (that is, there is a constant A so that $|f(t)| \leq A$ for all t), then f is of exponential order (do this by finding K, a and M from the definition).
SOLUTION: If $f(t)$ is bounded, then

$$
|f(t)| \leq A=A \cdot \mathrm{e}^{0 \cdot t}
$$

for all t.
5. If the function is of exponential order, find the K, a, M from the definition. Otherwise, state that it is not of exponential order.
Something that may be handy from algebra: $A=\mathrm{e}^{\ln (A)}$.
(a) $\sin (t)$

SOLUTION: $\sin (t)$ is bounded by 1 , so $K=1, a=0$, and M is irrelevant (true for all t).
(b) $\tan (t)$

SOLUTION: Since the tangent function has vertical asymptotes, $\tan (t)$ is not of exponential order.
(c) t^{3}

SOLUTION: Consider $t>0$:

$$
t^{3}=t^{3}=\mathrm{e}^{\ln \left(t^{3}\right)}=\mathrm{e}^{3 \ln t} \leq \mathrm{e}^{3 t}
$$

Therefore, $K=1, a=3$ and $M=0$
(d) $e^{t^{2}}$

SOLUTION: Not of exponential order, since we're raising t to a polynomial power (larger than 1).
(e) 5^{t}

SOLUTION:

$$
5^{t}=\mathrm{e}^{\ln \left(5^{t}\right)}=\mathrm{e}^{\ln (5) t}
$$

so $K=1, a=\ln (5)$ and $M=0$.
(f) t^{t}

SOLUTION: t^{t} is not of exponential order, since $t^{t}=\mathrm{e}^{t \ln (t)}$ and

$$
t \ln (t)>a t
$$

for any constant a.
6. Use complex exponentials to find the Laplace transform of $t \sin (a t)$.

SOLUTION: Using the definition, we'll consider the imaginary part of the following integral:

$$
\int_{0}^{\infty} \mathrm{e}^{-s t} t \mathrm{e}^{a i t} d t=\int_{0}^{\infty} t \mathrm{e}^{-(s-a i) t} d t
$$

Using integration by parts,

$$
\begin{array}{c|c|c}
\hline+ & t & \mathrm{e}^{-(s-a i) t} \\
- & 1 & -1 /(s-a i) \mathrm{e}^{-(s-a i) t} \\
+ & 0 & 1 /(s-a i)^{2} \mathrm{e}^{-(s-a i) t}
\end{array} \Rightarrow \quad \mathrm{e}^{-(s-a i) t}\left(-\frac{t}{s-a i}-\frac{1}{(s-a i)^{2}}\right)
$$

The term in the parentheses will go to zero as long as the exponential goes to zeroWhich it will as long as $s>0$. In that case, the integral becomes:

$$
\frac{1}{(s-a i)^{2}}=\frac{1}{\left(s^{2}-a^{2}\right)-2 a s i}
$$

When we multiply by the conjugate, the denominator will become:

$$
\left(s^{2}-a^{2}\right)^{2}+4 a^{2} s^{2}=s^{4}-2 a^{2} s^{2}+a^{4}+4 a^{2} s^{2}=s^{4}+2 a^{2} s^{2}+a^{4}=\left(s^{2}+a^{2}\right)^{2}
$$

so that finally we get:

$$
\frac{1}{(s-a)^{2}}=\frac{s^{2}-a^{2}}{\left(s^{2}+a^{2}\right)^{2}}+\frac{2 a s}{\left(s^{2}+a^{2}\right)^{2}} i
$$

Therefore, our final answer is the imaginary part of this,

$$
\frac{2 a s}{\left(s^{2}+a^{2}\right)}
$$

For future reference, you might verify that this expression is actually:

$$
(-1) \frac{d}{d s}\left(\frac{a}{s^{2}+a^{2}}\right)
$$

which is how we will be computing this transform later...

