Exercise Set 4 (HW for 7.6, 7.8)

1. Solve $\mathbf{x}' = A\mathbf{x}$, where A is given below:

(a)
$$A = \begin{bmatrix} 3 & -2 \\ 4 & -1 \end{bmatrix}$$

(d)
$$A = \begin{bmatrix} -3/2 & 1 \\ -1/4 & -1/2 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$$

(e)
$$A = \begin{bmatrix} 1 & -1 \\ 5 & -3 \end{bmatrix}$$

(c)
$$A = \begin{bmatrix} 2 & -5 \\ 1 & -2 \end{bmatrix}$$

- 2. For 1(a) and 1(b), convert to a second order differential equation and solve by methods from Chapter 3.
- 3. Given the eigenvalues and eigenvectors for some matrix A, write the general solution to $\mathbf{x}' = A\mathbf{x}$. Furthermore, classify the origin as a sink, source, spiral sink, spiral source, saddle, or none of the above.

(a)
$$\lambda = -1 + 2i$$
 $\mathbf{v} = \begin{bmatrix} 1 - i \\ 2 \end{bmatrix}$

$$\mathbf{v} = \begin{bmatrix} 1-i \\ 2 \end{bmatrix}$$

(b)
$$\lambda = -2, 3$$

(b)
$$\lambda = -2, 3$$
 $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

(c)
$$\lambda = -2, -2$$

(c)
$$\lambda = -2, -2$$
 $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$

(d)
$$\lambda = 2, -3$$

(d)
$$\lambda = 2, -3$$
 $\mathbf{v}_1 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ $\mathbf{v}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

(e)
$$\lambda = 1 + 3i$$
 $\mathbf{v} = \begin{bmatrix} 1 \\ 1 - i \end{bmatrix}$

$$\mathbf{v} = \left[\begin{array}{c} 1 \\ 1 - i \end{array} \right]$$

(f)
$$\lambda = 2i$$

(f)
$$\lambda = 2i$$
 $\mathbf{v} = \begin{bmatrix} 1+i\\1 \end{bmatrix}$

4. (Also see 13-20, p. 410) For each system $\mathbf{x}' = A\mathbf{x}$, the matrix A will depend upon the parameter α : (i) Determine the eigenvalues in terms of α , (ii) Find the critical values of α where the behavior of the solution to the system changes significantly. We'll go through one or two in class.

(a)
$$\left[\begin{array}{cc} \alpha & 1 \\ -1 & \alpha \end{array} \right]$$

(c)
$$\begin{bmatrix} 2 & -5 \\ \alpha & -2 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 0 & -5 \\ 1 & \alpha \end{bmatrix}$$

(d)
$$\begin{bmatrix} 3 & \alpha \\ -6 & -4 \end{bmatrix}$$