
Solutions, Exercise Set 5 (Finishing Chapter 7)

1. Solve x′ = Ax, where A is given below. Also, classify the origin using the Poincaré
diagram.

(a) A =

[
5 −1
3 1

] Tr(A) = 6
det(A) = 8

∆ = 4

SOLUTION: We can compute the trace, determinant and discriminant first- That
will help us verify our later work and tell us what the origin is. In this case, we
have a source, which means we’ll have a two positive real eigenvalues:

λ2 − 6λ+ 8 = 0 ⇒ (λ− 4)(λ− 2) = 0 ⇒ λ = 2, 4

For λ1 = 2, the equation we solve is: (5− 2)v1− v2 = 0, or v2 = 3v1. Writing this
in vector form, v1 = [1, 3]T .

For λ2 = 4, the equation we solve is (5−4)v1−v2 = 0, or v1 = v2. In vector form,
v = [1, 1]T .

In summary, the solution is:

x(t) = C1e
2t

[
1
3

]
+ C2e

4t

[
1
1

]

(b) A =

[
3 −4
1 −1

] Tr(A) = 2
det(A) = 1

∆ = 0

SOLUTION: Using the trace, determinant and discriminant, we see that we have
a degenerate source- Meaning we have a double, positive, real eigenvalue:

λ2 − 2λ+ 1 = 0 ⇒ (λ− 1)2 = 0 ⇒ λ = 1, 1

For λ = 1, the equation we solve is: (3− 1)v1− 4v2 = 0, or v1 = 2v2. Writing this
in vector form, v = [2, 1]T .

For the generalized eigenvector w, the equation we solve is (3− 1)w1 − 4w2 = 2.
A nice choice might be w = [1, 0]T .

In summary, the solution is:

x(t) = C1e
t

[
2
1

]
+ C2e

t

(
t

[
2
1

]
+

[
1
0

])

(c) A =

[
4 −2
8 −4

] Tr(A) = 0
det(A) = 0

∆ = 0
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SOLUTION: Using the trace, determinant and discriminant, we see that we have
“uniform motion”, or a double zero eigenvalue λ = 0, 0.

For an eigenvector, the equation we solve is: 4v1 − 2v2 = 0, or v2 = 2v1. Writing
this in vector form, v = [1, 2]T .

For the generalized eigenvector w, the equation we solve is 4w1−2w2 = 1. A nice
choice might be w = [0, 1/2]T .

In summary, the solution is:

x(t) = C1

[
1
2

]
+ C2

(
t

[
1
2

]
+

[
0

1/2

])
=

[
c1 + tc2

2c1 + 2tc2 + c2/2

]

(d) A =

[
5 −2
1 3

] Tr(A) = 8
det(A) = 17

∆ = −4

SOLUTION: Using the trace, determinant and discriminant, we see that we have
a spiral source, and so we expect complex conjugate eigenvalues with positive real
part:

λ2 − 8λ+ 17 = 0 ⇒ (λ− 4)2 + 1 = 0 ⇒ λ = 4± i
For λ = 4+i, the second equation might be a bit easier to use: v1+(3−(4+i))v2 =
0, or v1 = (1 + i)v2. Writing this in vector form, v = [1 + i, 1]T (an alternative
would be [2, 1− i]T )

Now we need to compute eλtv:

e4t(cos(t) + i sin(t))

[
1 + i

1

]
= e4t

[
cos(t)− sin(t) + i(sin(t)− cos(t))

cos(t) + i sin(t)

]
In summary, the solution is:

x(t) = e4t
(
C1

[
cos(t)− sin(t)

cos(t)

]
+ C2

[
sin(t) + cos(t)

sin(t)

])
2. Solve the following second order IVP three ways: (i) Using methods of Chapter 3, (ii)

Using the Laplace transform, and (iii) by converting it into a system of first order.

y′′ − 2y′ − 3y = 0, y(0) = 1, y′(0) = 1

(a) Using Chapter 3, the ansatz is y = ert, the characteristic equation is r2−2r−3 = 0,
from which we get r = −1, 3. The solution is

y(t) = C1e
−t + C2e

3t

Using the initial conditions,

C1 + C2 = 1
−C1 + 3C2 = 1

⇒ C1 = C2 =
1

2

2



Therefore, the specific solution to the IVP is given by

1

2
e−t +

1

2
e3t

(b) Using the Laplace transform:

(s2Y−s−1)−2(sY−1)−3 = 0 ⇒ (s2−2s−3)Y = s−3 ⇒ Y =
s− 3

s2 − 2s− 3

Using partial fractions, we have:

Y =
1

2

1

s+ 1
+

1

2

1

s− 3
⇒ y(t) =

1

2
e−t +

1

2
e3t

(c) Using eigenvalues and eigenvectors, we let x1 = y, x2 = y′. Then the sytem of
first order is given below. Notice that the initial values mean that x(0) = [1, 1]T .[

x′1
x′2

]
=

[
0 1
3 2

] [
x1
x2

]
The trace is 2, determinant is −3 and the discriminant is positive, so we expect a
saddle (eigenvalues with mixed signs). The characteristic equation is λ2−2λ−3 =
0 (the same as before), so λ = −1, 3.

For λ1 = −1, the eigenvector is found by solving v1 + v2 = 0, or v = [1,−1]T .

For λ2 = 3, the eigenvector is found by solving −3v1 + v2 = 0, or v = [1, 3]T .

The general solution is:

x(t) = C1e
−t

[
1
−1

]
+ C2e

3t

[
1
3

]
Now, if x(0) = [1, 1]T , then:

C1 + C2 = 1
−C1 + 3C2 = 1

⇒ C1 = C2 =
1

2

Therefore, the solution is:

x(t) =
1

2
e−t

[
1
−1

]
+

1

2
e3t

[
1
3

]
3. For the following nonlinear systems, find the equilibrium solutions, then find the general

solution by looking at dy/dx:
x′ = x− xy
y′ = y + 2xy
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SOLUTION: The equilibrium solution(s) are found by setting the derivatives to zero:

x(1− y) = 0
y(1 + 2x) = 0

Now, if x = 0 in the first equation, then y = 0 in the second, so (0, 0) is one equilibrium.
If y = 1 in the first equation, then x = −1/2 in the second equation, so (−1/2, 1) is
the second equilibrium.

Finally, taking
dy

dx
=
y(1 + 2x)

x(1− y)
⇒ 1− y

y
dy =

1 + 2x

x
dx

From which we get:
ln |y| − y = ln |x|+ 2x+ C

4. For each system x′ = Ax, the matrix A will depend upon the parameter α: (i) Deter-
mine the eigenvalues in terms of α, (ii) Find the critical values of α where the behavior
of the solution to the system changes significantly. We’ll go through one or two in
class.

(a)

[
2 −5
α −2

]
SOLUTION: Here, the trace is zero, the determinant is 5− 4α, and the discrimi-
nant is −4(5− 4α) (so it will be opposite in sign to the determinant.

Because the trace is zero, we’re on the “det(A)” axis in the Poincare Diagram. If
the determinant is positive (α > 4/5), then the discriminant is negative, and the
origin is a center. If the determinant is negative (α < 4/5), we have a saddle, and
if α = 4/5, we have “uniform motion”.

The eigenvalues are λ = ±
√

5− 4α.

(b)

[
0 α
1 −2

]
We do a similar analysis here. The trace is −2, the determinant is −α, and the
discriminant is 4 + 4α.

Looking on the Poincare Diagram, if the determinant is negative (α > 0), then the
origin is a saddle. If α = 0, we have a line of stable fixed points, and if−1 < α < 0,
then the determinant is now positive, and the discriminant is negative (a spiral
sink). If α = −1, we have a degenerate sink, and if α < −1, we have a sink.

The eigenvalues are λ = −1±
√

1 + α.
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