Hyperbolic Functions- Solutions

Definition: The hyperbolic sine, denoted by $\sinh (x)$, is defined as:

$$
\sinh (x)=\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)
$$

Similarly, the hyperbolic cosine is defined:

$$
\cosh (x)=\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)
$$

Practice questions with the hyperbolic functions:

1. Plot the hyperbolic sine and cosine. What do they look like? Are they periodic functions?

From Maple, see Figure 1 (left function is the hyperbolic sine). They are NOT periodic.

Figure 1: Graphs of the Hyperbolic Sine (left) and Cosine (right)
2. Show, using the definitions, that the hyperbolic sine is an odd function ${ }^{1}$ and the hyperbolic cosine is even.
The hyperbolic sine is odd:

$$
\sinh (-x)=\frac{1}{2}\left(\mathrm{e}^{-x}-\mathrm{e}^{x}\right)=-\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)=-\sinh (x)
$$

[^0]The hyperbolic cosine is even:

$$
\cosh (-x)=\frac{1}{2}\left(\mathrm{e}^{-x}+\mathrm{e}^{x}\right)=\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)=\cosh (x)
$$

3. Show, using the definitions, that:

$$
\cosh ^{2}(x)-\sinh ^{2}(x)=1
$$

(Don't confuse this with the Pythagorean Identity: $\cos ^{2}(x)+\sin ^{2}(x)=1$)
Go ahead and just compute:

$$
\cosh ^{2}(x)=\frac{1}{4}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}=\frac{1}{4}\left(\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}\right)
$$

Similarly,

$$
\sinh ^{2}(x)=\frac{1}{4}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)^{2}=\frac{1}{4}\left(\mathrm{e}^{2 x}-2+\mathrm{e}^{-2 x}\right)
$$

From there, just subtract to get 1 .
4. Show, using the definitions, that:

$$
\frac{d}{d x}(\sinh (x))=\cosh (x) \quad \text { and } \quad \frac{d}{d x}(\cosh (x))=\sinh (x)
$$

(Don't confuse these with the derivatives of sine and cosine!)

$$
\frac{d}{d x} \sinh (x)=\frac{d}{d x}\left(\frac{1}{2} \mathrm{e}^{x}-\frac{1}{2} \mathrm{e}^{-x}\right)=\frac{1}{2} \mathrm{e}^{x}+\frac{1}{2} \mathrm{e}^{-x}=\cosh (x)
$$

And,

$$
\frac{d}{d x} \cosh (x)=\frac{d}{d x}\left(\frac{1}{2} \mathrm{e}^{x}+\frac{1}{2} \mathrm{e}^{-x}\right)=\frac{1}{2} \mathrm{e}^{x}-\frac{1}{2} \mathrm{e}^{-x}=\sinh (x)
$$

5. Show that any function of the form:

$$
y=A \sinh (m t)+B \cosh (m t)
$$

satisfies the differential equation: $y^{\prime \prime}=m^{2} y$.
From what we did in Part 4:

$$
y=A \sinh (m t)+B \cosh (m t) \quad \Rightarrow \quad \frac{d y}{d t}=A m \cosh (m t)+B m \sinh (m t)
$$

and

$$
y^{\prime \prime}=A m^{2} \sinh (m t)+B m^{2} \cosh (m t)=m^{2}(A \sinh (m t)+B \cosh (m t))
$$

6. Show that any function of the form:

$$
y=A \sin (\omega t)+B \cos (\omega t)
$$

satisfies the differential equation: $y^{\prime \prime}=-\omega^{2} y$
For this one,

$$
y^{\prime}=A \omega \cos (\omega t)-B \omega \sin (\omega t)
$$

and

$$
y^{\prime \prime}=-A \omega^{2} \sin (\omega t)-B \omega^{2} \cos (\omega t)
$$

so that

$$
y^{\prime \prime}=-\omega^{2}(A \sin (\omega t)+B \cos (\omega t))=-\omega^{2} y
$$

[^0]: ${ }^{1}$ Recall that f is odd if $f(-x)=-f(x)$, and that f is even if $f(-x)=f(x)$.

