Hyperbolic Functions

In differential equations, the terms e^{x} and e^{-x} appear together so often, that it is convenient to define special functions that use them:

Definition: The hyperbolic sine, denoted by $\sinh (x)$, is defined as:

$$
\sinh (x)=\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)
$$

Similarly, the hyperbolic cosine is defined:

$$
\cosh (x)=\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)
$$

Practice questions with the hyperbolic functions:

1. Plot the hyperbolic sine and cosine. What do they look like? Are they periodic functions?
2. Show, using the definitions, that the hyperbolic sine is an odd function ${ }^{1}$ and the hyperbolic cosine is even.
3. Show, using the definitions, that:

$$
\cosh ^{2}(x)-\sinh ^{2}(x)=1
$$

(Don't confuse this with the Pythagorean Identity: $\cos ^{2}(x)+\sin ^{2}(x)=1$)
4. Show, using the definitions, that:

$$
\frac{d}{d x}(\sinh (x))=\cosh (x) \quad \text { and } \quad \frac{d}{d x}(\cosh (x))=\sinh (x)
$$

(Don't confuse these with the derivatives of sine and cosine!)
5. Show that any function of the form:

$$
y=A \sinh (m t)+B \cosh (m t)
$$

satisfies the differential equation: $y^{\prime \prime}=m^{2} y$.
6. Show that any function of the form:

$$
y=A \sin (\omega t)+B \cos (\omega t)
$$

satisfies the differential equation: $y^{\prime \prime}=-\omega^{2} y$

[^0]
[^0]: ${ }^{1}$ Recall that f is odd if $f(-x)=-f(x)$, and that f is even if $f(-x)=f(x)$.

