Partial Fraction Decomposition (Summary)

Partial Fraction Decomposition is used when we have a fraction, $P(x) / Q(x)$, where P, Q are polynomials, and the degree of P is less than the degree of Q. NOTE: If the degree of the numerator is larger than the denominator, then perform long division first.

Assume Q is fully factored. We have 4 cases that we will consider.
Case I: Q has distinct linear factors,

$$
Q(x)=\left(a_{1} x+b_{1}\right)\left(a_{2} x+b_{2}\right) \ldots\left(a_{k} x+b_{k}\right)
$$

Then:

$$
\frac{P(x)}{Q(x)}=\frac{A_{1}}{a_{1} x+b_{1}}+\frac{A_{2}}{a_{2} x+b_{2}}+\ldots+\frac{A_{k}}{a_{k} x+b_{k}}
$$

Example (be sure you could have found the constants):

$$
\frac{3 x}{(x-1)(x-2)}=\frac{A}{x-2}+\frac{B}{x-1}=\frac{6}{x-2}-\frac{3}{x-1}
$$

Case II : Q has some repeated linear factors. Let $a_{1} x+b_{1}$ be repeated r times. Then, instead of the single term $A_{1} /\left(a_{1} x+b_{1}\right)$, we have one term for each successive power in the denominator:

$$
\frac{B_{1}}{a_{1} x+b_{1}}+\frac{B_{2}}{\left(a_{1} x+b_{1}\right)^{2}}+\ldots+\frac{B_{r}}{\left(a_{1} x+b_{1}\right)^{r}}
$$

Example:

$$
\frac{3 x+1}{(x-1)^{2}(x-2)}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x-2}=-\frac{7}{x-1}-\frac{4}{(x-1)^{2}}+\frac{7}{x-2}
$$

Case III : Q has some irreducible quadratic factors, not repeated. Let $a x^{2}+b x+c$ be an irreducible quadratic factor for Q. Then the decomposition will have the term:

$$
\frac{A x+B}{a x^{2}+b x+c}
$$

Example:

$$
\frac{3 x}{(x-1)\left(x^{2}+1\right)}=\frac{A}{x-1}+\frac{B x+C}{x^{2}+1}=\frac{3}{2} \frac{1}{x-1}+\frac{1}{2} \frac{-3 x+3}{x^{2}+1}
$$

Case IV : Q has some irreducible quadratic factors, some repeated. Suppose that $a x^{2}+b x+c$ is a repeated quadratic factor (repeated r times). Then, instead of the single expression in Case III, we will have:

$$
\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\ldots+\frac{A_{r} x+B_{r}}{\left(a x^{2}+b x+c\right)^{r}}
$$

Example:

$$
\frac{x+3}{(x-1)\left(x^{2}+1\right)^{2}}=\frac{1}{x-1}-\frac{x+1}{x^{2}+1}-\frac{2 x+1}{\left(x^{2}+1\right)^{2}}
$$

Worked Examples and Exercises

1. Worked Example:

$$
\frac{6 x^{2}-6 x-6}{(x-1)(x+2)(x-3)}=\frac{A}{x-1}+\frac{B}{x+2}+\frac{C}{x-3}
$$

Clear fractions:

$$
6 x^{2}-6 x-6=A(x+2)(x-3)+B(x-1)(x-3)+C(x-1)(x+2)
$$

And this statement must be true for all x. In particular, it must be true for $x=1, x=-2$ and $x=3$ (we chose these to zero out the others). Substituting, we get

$$
A=1 \quad B=2 \quad C=3
$$

2. Worked Example:

$$
\frac{x^{2}-2}{x\left(x^{2}+2\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+2}
$$

Clear fractions. In this case, it might be best to solve for the coefficients in a slightly different manner- Equate the coefficients to the polynomials on the left and right:

$$
x^{2}-2=A\left(x^{2}+2\right)+(B x+C) x=(A+B) x^{2}+C x+2 A
$$

so that:

$$
1=A+B, 0=C, 2 A=-2
$$

so: $A=-1, B=2$ and $C=0$:

$$
\frac{x^{2}-2}{x\left(x^{2}+2\right)}=\frac{-1}{x}+\frac{2 x}{x^{2}+2}
$$

Exercises

For each of the following, first give the general form for the Partial Fraction expansion, then solve for the constants.

1. $\frac{x^{2}+1}{x^{2}+3 x+2}$
2. $\frac{2 x+3}{(x+1)^{2}}$
3. $\frac{4 x^{2}-7 x-12}{x(x+2)(x-3)}$
4. $\frac{x^{2}+3}{x^{3}+2 x}$
5. $\frac{x^{2}-2 x-1}{(x-1)^{2}\left(x^{2}+1\right)}$
6. $\frac{3 x^{3}-x+12}{x^{2}-1}$

Solutions

1. $\frac{x^{2}+1}{x^{2}+3 x+2}=1-\frac{5}{x+2}+\frac{2}{x+1}$
2. $\frac{2 x+3}{(x+1)^{2}}=\frac{2}{x+1}+\frac{1}{(x+1)^{2}}$
3. $\frac{4 x^{2}-7 x-12}{x(x+2)(x-3)}=\frac{2}{x}+\frac{9}{5} \frac{1}{x+2}+\frac{1}{5} \frac{1}{x-3}$
4. $\frac{x^{2}+3}{x^{3}+2 x}=\frac{3}{2} \frac{1}{x}-\frac{1}{2} \frac{x}{x^{2}+2}$
5. $\frac{x^{2}-2 x-1}{(x-1)^{2}\left(x^{2}+1\right)}=\frac{1}{x-1}-\frac{1}{(x-1)^{2}}-\frac{x-1}{x^{2}+1}$
6. $3 x+\frac{7}{x-1}-\frac{5}{x+1}$
