Extra Practice: Section 2.5

1. Given the differential equation, identify if each is linear (L), separable (S), autonomous (A), Bernoulli (B), and/or homogeneous (H). Recall that any given DE may have multiple labels.
(a) $\frac{d y}{d x}=\frac{x^{3}-2 y}{x}$
(b) $\frac{d y}{d x}=\frac{x+y}{x-y}$
(c) $\left(\mathrm{e}^{x}+1\right) \frac{d y}{d x}=y-y \mathrm{e}^{x}$
(d) $\frac{d y}{d t}=\cos (y)$
(e) $\frac{d y}{d t}=\cos (t)$
(f) $t^{2} y^{\prime}+2 t y-y^{3}=0$
2. Suppose we are given the differential equation:

$$
y^{\prime}=\sin (y)
$$

(a) True or False: The solution may be periodic.
(b) What happens to the solution corresponding to $y(0)=1$? How about $y(0)=100$? (HINT: Do not solve!)
3. Below are two direction fields (in the (t, y) plane). Find an autonomous differential equation, $y^{\prime}=F(y)$, that is consistent with each one. Proceed by first sketching a consistent function for each direction field in the $\left(y, y^{\prime}\right)$ plane.

4. Let $y^{\prime}=y(y-1)$.
(a) Give the general solution.
(b) Plot the appropriate function in the (y, y^{\prime}) plane, and classify the equilibria as to stability.
(c) Without going to the solution $y(t)$, find intervals on which $y(t)$ will be concave up and concave down.
5. For each fraction, write down what the partial fraction expansion would be (but do not solve for the constants!):
(a) $\frac{x^{2}-3 x+1}{x(x-1)(x-2)}$
(b) $\frac{3 x-1}{x^{2}(x-1)}$
(c) $\frac{3 x-1}{\left(x^{2}+1\right)\left(x^{2}+4\right)^{2}}$

