Selected Solutions, Section 5.1

In problems 1-14 even, use the Ratio Test to find the radius of convergence.
6. Use the Ratio Test:

$$
\lim _{n \rightarrow \infty} \frac{\left|x-x_{0}\right|^{n+1}}{n+1} \cdot \frac{n}{\left|x-x_{0}\right|^{n}}=\left|x-x_{0}\right| \lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)=\left|x-x_{0}\right|
$$

The series converges absolutely if $\left|x-x_{0}\right|<1$, and diverges if $\left|x-x_{0}\right|>1$, so the radius is 1 .
8. Use the Ratio Test:

$$
\lim _{n \rightarrow \infty} \frac{(n+1)!|x|^{n+1}}{(n+1)^{n+1}} \frac{n^{n}}{|x|^{n} n!}=|x| \lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}
$$

Do you recall the technique where we exponentiate to use L'Hospital's rule?

$$
\left(\frac{n}{n+1}\right)^{n}=\mathrm{e}^{n \ln \left(\frac{n}{n+1}\right)}
$$

so now we take the limit of the exponent:

$$
\lim _{n \rightarrow \infty} n \ln \left(\frac{n}{n+1}\right)=\lim _{n \rightarrow \infty} \frac{\ln \left(\frac{n}{n+1}\right)}{\frac{1}{n}}
$$

which is of the form $0 / 0$. Continue with L'Hospital:

$$
\lim _{n \rightarrow \infty} \frac{\ln \left(\frac{n}{n+1}\right)}{\frac{1}{n}} \operatorname{Lim}_{n \rightarrow \infty} \frac{\frac{n+1}{n} \cdot \frac{n+1-n}{(n+1)^{2}}}{-\frac{1}{n^{2}}}==\lim _{n \rightarrow \infty} \frac{1}{n(n+1)} \cdot \frac{-n^{2}}{1}=\lim _{n \rightarrow \infty} \frac{-n}{n+1}=-1
$$

Therefore,

$$
\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}=\lim _{n \rightarrow \infty} \mathrm{e}^{n \ln \left(\frac{n}{n+1}\right)}=\mathrm{e}^{-1}
$$

And the ratio test:

$$
\frac{|x|}{e}<1 \quad \Rightarrow \quad|x|<\mathrm{e}
$$

12. Actually, this is kind of a "trick question", although the usual procedure still works:

$$
\begin{aligned}
& f(x)=x^{2} \Rightarrow f(-1)=1 \\
& f^{\prime}(x)=2 x \Rightarrow \\
& f^{\prime}(-1)=-2 \\
& f^{\prime \prime}(x)=2 \Rightarrow f^{\prime \prime}(-1)=2
\end{aligned}
$$

Therefore,

$$
x^{2}=1-2(x+1)+\frac{2}{2!}(x+1)^{2}=1-2(x+1)+(x+1)^{2}
$$

(Notice that if you expand and simplify this, you get x^{2} back.)
This is not an infinite series; no matter what x is, you can always add those three terms together: The radius of convergence is ∞.
14. At issue here is to find a pattern in the derivatives, so we can write the general form for the $n^{\text {th }}$ derivative.

$$
\begin{array}{lll}
n=0 & f(x)=(1+x)^{-1} & f(0)=1 \\
n=1 & f^{\prime}(x)=-(1+x)^{-2} & f^{\prime}(0)=-1 \\
n=2 & f^{\prime \prime}(x)=(-1)(-2)(1+x)^{-3} & f^{\prime \prime}(0)=2 \\
n=3 & f^{\prime \prime \prime}(x)=(-1)(-2)(-3)(1+x)^{-4} & f^{\prime \prime \prime}(0)=-3!
\end{array}
$$

From this we see that:

$$
f^{(n)}(0)=(-1)^{n} n!
$$

The Taylor series (actually, the Maclaurin series) is:

$$
\frac{1}{1+x}=\sum_{n=0}^{\infty} \frac{(-1)^{n} n!}{n!} x^{n}=\sum_{n=0}^{\infty}(-x)^{n}
$$

and this converges if $|x|<1$ (its an alternating geometric series).
Alternatively, we could see this directly using the sum of the geometric series:

$$
\sum_{n=0}^{\infty}(-x)^{n}=\frac{1}{1-(-x)}=\frac{1}{1+x}
$$

18. Given that

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Compute y^{\prime} and $y^{\prime \prime}$ by writing out the first four terms of each to get the general term. Show that, if $y^{\prime \prime}=y$, then the coefficients a_{0} and a_{1} are arbitrary, and show the given recursion relation.

$$
\begin{gathered}
y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x x^{3}+\ldots=\sum_{n=0}^{\infty} a_{n} x^{n} \\
y^{\prime}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+\ldots=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n} \\
y^{\prime \prime}=2 a_{2}+3 \cdot 2 a_{3} x+4 \cdot 3 a_{4} x^{2}+5 \cdot 4 a_{5} x^{3}+\ldots=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}
\end{gathered}
$$

If $y^{\prime \prime}=y$, then the coefficients must match up, power by power:

$$
a_{0}=2 a_{2} \quad a_{1}=6 a_{3} \quad a_{2}=12 a_{4} \quad \ldots \quad a_{n}=(n+2)(n+1) a_{n+2}
$$

Problems 19-23 are some symbolic manipulation problems.
19. Rewrite the left side equation so that the powers of x match up.
20. Much the same. In this problem, we see that the first sum starts with a constant term, the second sum starts with x^{1}, and so does the sum on the left. Therefore, we would rewrite each sum to start with x^{1} power:

$$
\begin{gathered}
\sum_{k=1}^{\infty} a_{k+1} x^{k}=a_{1}+\sum_{n=1}^{\infty} a_{n+1} x^{n} \\
\sum_{k=0}^{\infty} a_{k} x^{k+1}=\sum_{n=1}^{\infty} a_{n-1} x^{n}
\end{gathered}
$$

Now each sum begins with the same power of x,

$$
\sum_{k=1}^{\infty} a_{k+1} x^{k}+\sum_{k=0}^{\infty} a_{k} x^{k+1}=a_{1}+\sum_{n=1}^{\infty} a_{n+1} x^{n}+\sum_{n=1}^{\infty} a_{n-1} x^{n}=a_{1}+\sum_{n-0}^{\infty}\left(a_{n+1}+a_{n-1}\right) x^{n}
$$

21. You may use a different symbol for the summation index if you like (it is a dummy variable):

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
$$

We would like this to be indexed using $x^{k}, k=0,1,2, \ldots$. This means that $k=n-2$ or $n=k+2$. Making the substitutions in each term,

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{k=0}^{\infty}(k+2)(k+1) a_{k+2} x^{k}
$$

22. In this case, the powers begin with x^{2}, so we let $k=n+2$ or $n=k-2$, with $k=2,3,4, \ldots$:

$$
\sum_{n=0}^{\infty} a_{n} x^{n+2}=\sum_{k=2}^{\infty} a_{k-2} x^{k}
$$

23. Take care of the product with x first,

$$
x \sum_{n=1}^{\infty} n a_{n} x^{n-1}+\sum_{k=0}^{\infty} a_{k} x^{k}=\sum_{n=1}^{\infty} n a_{n} x^{n}+\sum_{k=0}^{\infty} a_{k} x^{k}
$$

The first sum could begin with zero- It would make the first term of the sum zero. Therefore,

$$
\sum_{n=0}^{\infty} n a_{n} x^{n}+\sum_{k=0}^{\infty} a_{k} x^{k}=\sum_{n=1}^{\infty}(n+1) a_{n} x^{n}
$$

