3.1, Exercises 25, 27
25. Consider the DE below:

, o [1 =1
v=[] T}y

teZt
(t+ 1)e*
SOLUTION: We compute the derivative (be sure and use the product rule!), then
compare it to AY and see if we get the same thing:
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(a) Check that the function Y = l _ ] is a solution to the DE.
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We notice that, using our Y,

(b) Solve the IVP, if Y(0) = [ 0 ]
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By the Linearity Principle, if Y solves our DE, so does ¢Y for any constant c. In

this case, if we let ¢ = —2, then —2Y () gives the desired result.

27. Given the matrix A below, and the vectors Y, Ys:
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(a) Check that Y; and Y are solutions to the DE:
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If you simplify this expression, you do get the expression for Y/
Similarly, for Ys:
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If we simplify this, we get the expressions for Ys.
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(b) Are the functions linearly independent? If not, they would be constant multiples
of each other for all £. In particular, we can then check to see if that is the case
at t =0:
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These are not along the same line (through the origin), so they are linearly inde-
pendent.

(c) For the initial conditions, we want to find constants ¢; and ¢y so that

1Y 1(0) + 2 Y(0) = [ ; ]

This leads us to the system below, which we can solve via Cramer’s Rule:
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The solution is therefore | 3
—ng(t) + ng(t)

(You can leave the answer in this form)



