## Solutions: Conversions

1. Convert the following $n^{\text {th }}$ order DEs to systems of first order.
(a) $y^{\prime \prime}+3 y^{\prime}+2 y=0$

SOLUTION: Let $x_{1}=y, x_{2}=y^{\prime}$. Then:

$$
\begin{array}{ll}
x_{1}^{\prime} & =x_{2} \\
x_{2}^{\prime} & =-2 x_{1}-3 x_{2}
\end{array}
$$

(b) $y^{\prime \prime \prime}=2 y-3 y^{\prime}$

SOLUTION: Let $x_{1}=y, x_{2}=y^{\prime}, x_{3}=y^{\prime \prime}$. Then:

$$
\begin{aligned}
& x_{1}^{\prime}=x_{2} \\
& x_{2}^{\prime}=x_{3} \\
& x_{3}^{\prime}=2 x_{1}-3 x_{2}
\end{aligned}
$$

(c) $2 y^{\prime \prime}+6 y^{\prime}+y=0$

SOLUTION: Let $x_{1}=y, x_{2}=y^{\prime}$. Then:

$$
\begin{aligned}
& x_{1}^{\prime}=x_{2} \\
& x_{2}^{\prime}=-(1 / 2) x_{1}-3 x_{2}
\end{aligned}
$$

(d) $y^{\prime \prime}+5 y=0$

SOLUTION: Let $x_{1}=y, x_{2}=y^{\prime}$. Then:

$$
\begin{aligned}
& x_{1}^{\prime}=x_{2} \\
& x_{2}^{\prime}=-5 x_{1}
\end{aligned}
$$

(e) $y^{(v)}=y-3 y^{\prime}+t y^{\prime \prime}+y^{\prime \prime \prime}-3 y^{(i v)}$

SOLUTION: Let $x_{1}=y, x_{2}=y^{\prime}, x_{3}=y^{\prime \prime}, x_{4}=y^{\prime \prime \prime}, x_{5}=y^{(i v)}$. Then:

$$
\begin{aligned}
& x_{1}^{\prime}=x_{2} \\
& x_{2}^{\prime}=x_{3} \\
& x_{3}^{\prime}=x_{4} \\
& x_{4}^{\prime}=x_{5} \\
& x_{5}^{\prime}=x_{1}-3 x_{2}+t x_{3}+x_{4}-3 x_{5}
\end{aligned}
$$

2. Convert the following systems of first order to an equivalent second order DE , if possible.
(a) $\begin{aligned} & x_{1}^{\prime}=x_{1}+2 x_{2} \\ & x_{2}^{\prime}=2 x_{1}+x_{2}\end{aligned} \quad$ Using Eqn 1, get $x_{2}=\frac{1}{2} x_{1}^{\prime}-\frac{1}{2} x_{1}$ :

$$
\frac{1}{2} x_{1}^{\prime \prime}-\frac{1}{2} x_{1}^{\prime}=2 x_{1}+\frac{1}{2} x_{1}^{\prime}-\frac{1}{2} x_{1} \quad \Rightarrow \quad x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0
$$

(b) $\begin{aligned} & x_{1}^{\prime}=-2 x_{1}+x_{2} \\ & x_{2}^{\prime}=x_{1}+x_{2}\end{aligned} \quad$ Using Eqn 1, get $x_{2}=x_{1}^{\prime}+2 x_{1}$ :

$$
x_{1}^{\prime \prime}+2 x_{1}^{\prime}=x_{1}+x_{1}^{\prime}+2 x_{1} \quad \Rightarrow \quad x_{1}^{\prime \prime}+x_{1}^{\prime}-3 x_{1}=0
$$

(c) $\begin{aligned} & x_{1}^{\prime}=x_{1} \\ & x_{2}^{\prime}=3 x_{2}\end{aligned}$

Since the DE for $x_{1}$ depends only on $x_{1}$ and the DE for $x_{2}$ depends only on $x_{2}$, we say that the system is decoupled. In that case, we cannot express the system as a single second order DE.

