## Visualizing Solutions

A differential equation is like a "road map":

$$
y^{\prime}=f(t, y)
$$

That is, at each point $(t, y)$, we can compute the slope of the line tangent to the solution curve $y(t)$.

## Visualizing Solutions

A differential equation is like a "road map":

$$
y^{\prime}=f(t, y)
$$

That is, at each point $(t, y)$, we can compute the slope of the line tangent to the solution curve $y(t)$.
If the function $y$ is well behaved, the tangent line should be a good approximation to $y$.

## Visualizing Solutions

A differential equation is like a "road map":

$$
y^{\prime}=f(t, y)
$$

That is, at each point $(t, y)$, we can compute the slope of the line tangent to the solution curve $y(t)$.
If the function $y$ is well behaved, the tangent line should be a good approximation to $y$.

Definition: A direction field is a plot in the $(t, y)$ plane that give the local tangent lines to the solution to a first order ODE.

Example: $y^{\prime}=t-y^{2}$

## Example: $y^{\prime}=t-y^{2}$

In drawing a picture, we might consider curves of constant slope (a.k.a. Isoclines). For example, the points that correspond to zero slope:

Example: $y^{\prime}=t-y^{2}$
In drawing a picture, we might consider curves of constant slope (a.k.a. Isoclines). For example, the points that correspond to zero slope:

$$
0=t-y^{2} \quad \Rightarrow \quad y^{2}=t
$$

Example: $y^{\prime}=t-y^{2}$
In drawing a picture, we might consider curves of constant slope (a.k.a. Isoclines). For example, the points that correspond to zero slope:

$$
0=t-y^{2} \quad \Rightarrow \quad y^{2}=t
$$

The points that correspond to a slope of 1 :

Example: $y^{\prime}=t-y^{2}$
In drawing a picture, we might consider curves of constant slope (a.k.a. Isoclines). For example, the points that correspond to zero slope:

$$
0=t-y^{2} \quad \Rightarrow \quad y^{2}=t
$$

The points that correspond to a slope of 1 :

$$
1=t-y^{2} \Rightarrow t=y^{2}+1
$$

Example: $y^{\prime}=t-y^{2}$
In drawing a picture, we might consider curves of constant slope (a.k.a. Isoclines). For example, the points that correspond to zero slope:

$$
0=t-y^{2} \quad \Rightarrow \quad y^{2}=t
$$

The points that correspond to a slope of 1 :

$$
1=t-y^{2} \quad \Rightarrow \quad t=y^{2}+1
$$

The points that correspond to a slope of -2 :

Example: $y^{\prime}=t-y^{2}$
In drawing a picture, we might consider curves of constant slope (a.k.a. Isoclines). For example, the points that correspond to zero slope:

$$
0=t-y^{2} \quad \Rightarrow \quad y^{2}=t
$$

The points that correspond to a slope of 1 :

$$
1=t-y^{2} \Rightarrow t=y^{2}+1
$$

The points that correspond to a slope of -2 :

$$
-2=t-y^{2} \quad \Rightarrow \quad t=y^{2}-2
$$

and so on...


Figure: Direction Field with Isoclines: $y^{\prime}=-2, y^{\prime}=0, y^{\prime}=1$

Sample solution curves must be consistent with the direction field:

Sample solution curves must be consistent with the direction field:


Give an ODE of the form $y^{\prime}=a y+b$ whose direction field looks like:


We see that the DE has $y=1$ as an equilibrium, so we can try:

$$
y^{\prime}=y-1 \quad \text { or } \quad y^{\prime}=1-y
$$

Which is it?

We see that the DE has $y=1$ as an equilibrium, so we can try:

$$
y^{\prime}=y-1 \quad \text { or } \quad y^{\prime}=1-y
$$

Which is it?
SOLUTION: $y^{\prime}=1-y$

Same question as before:


## Choose a DE

(1) $y^{\prime}=3-y$
(2) $y^{\prime}=y(y+3)$

0 $y^{\prime}=y(3-y)$
( $y^{\prime}=2 y-1$


