Math 244 Sample Final A Solutions

1. Find values of k for which the IVP: $t y^{\prime}-4 y=0, y(0)=k$ has (i) No solution, (ii) An infinite number of solutions. Does this violate the Existence and Uniqueness Theorem (explain)?
SOLUTION: Writing the DE as separable, we have $y^{\prime}=\frac{4 y}{t}$, so separating variables we have

$$
\frac{1}{y} d y=\frac{4}{t} d t \quad \Rightarrow \quad \ln |y|=4 \ln |t|+C=\ln \left|t^{4}\right|+C
$$

Exponentiating both sides, $y=A t^{4}$. Putting in the initial condition $t=0$ forces $k=0$ and A can be any real number.
For (i), if $k \neq 0$ we have no solution. For (ii), if $k=0$, we have an infinite number of solutions. For the $\mathrm{E} \& \mathrm{U}$ theorem, $f(t, y)=4 y / t$, and so f is not continuous at $t=0$. Thus, the theorem does not apply to this DE.
2. Suppose you have a tank of brine containing 300 gallons of water with a concentration of $1 / 6$ pounds of salt per gallon. There is brine pouring into the tank at a rate of 3 gallons per minute, and it contains 2 pounds of salt per gallon. The well-mixed solution leaves at 2 gallons per minute. (i) Write the initial value problem for the amount of salt in the tank at time t, and (ii) solve it.
SOLUTION: Using $s(t)$ for salt in the tank at time t, and recall that $d s / d t$ is in pounds (lbs) per minute,

$$
\frac{d s}{d t}=3 \frac{\mathrm{gal}}{\mathrm{~min}} \cdot 2 \frac{\mathrm{lbs}}{\mathrm{gal}}-2 \frac{\mathrm{gal}}{\min } \cdot \frac{\mathrm{~s}(\mathrm{t}) \mathrm{lbs}}{(300+t) \mathrm{gal}}, \quad s(0)=\frac{300}{6}=50 \mathrm{lbs}
$$

To solve this, we re-write it as a linear DE:

$$
\begin{gathered}
s^{\prime}+\frac{2}{300+t} s=6 \quad \Rightarrow \quad \mathrm{e}^{\int \frac{2}{300+t} d t}=(300+t)^{2} \Rightarrow \\
\left((300+t)^{2} s\right)^{\prime}=6(300+t)^{2} \Rightarrow \quad(300+t)^{2} s=2(300+t)^{3}+C \quad \Rightarrow \quad s(t)=2(300+t)+\frac{C}{(300+t)^{2}}
\end{gathered}
$$

Solving for C, we get:

$$
50=600+\frac{C}{300^{2}} \Rightarrow C=(-550)\left(300^{2}\right)
$$

It's fine to leave C like this since we aren't using a calculator.
3. For the following, find the power series expansion for the general solution up to and including the t^{4} term: $y^{\prime}-2 y=\sin (t)$
SOLUTION: Since this is first order, $y(0)=a_{0}$ will be arbitrary. Then:

$$
\begin{aligned}
& y^{\prime}(t)=2 y+\sin (t) \Rightarrow \quad y^{\prime}(0)=2 a_{0}+0=2 a_{0} \\
& y^{\prime \prime}(t)=2 y^{\prime}(t)+\cos (t) \quad \Rightarrow \quad y^{\prime \prime}(0)=2\left(2 a_{0}\right)+1=1+4 a_{0} \\
& y^{\prime \prime \prime}(t)=2 y^{\prime \prime}(t)-\sin (t) \quad \Rightarrow \quad y^{\prime \prime \prime}(0)=2\left(1+4 a_{0}\right)+0=2+8 a_{0} \\
&\left.\left.\left.y^{(} 4\right)(t)=2 y^{(} 3\right)(t)-\cos (t) \quad \Rightarrow \quad y^{(} 4\right)(0)=2\left(2+8 a_{0}\right)-1=3+16 a_{0}
\end{aligned}
$$

Using the Maclaurin series formula: $a_{n}=y^{(n)}(0) / n$!, we have:

$$
y(t) \approx a_{0}+2 a_{0} t+\frac{1+4 a_{0}}{2!} t^{2}+\frac{2+8 a_{0}}{3!} t^{3}+\frac{3+16 a_{0}}{4!}+\cdots
$$

4. Using the method of undetermined coefficients, give the form of the particular solution (do not solve) to:

$$
y^{\prime \prime}-6 y^{\prime}+9 y=6 t^{2}-12 t \mathrm{e}^{3 t}
$$

SOLUTION: We want to check the homogeneous part: $\lambda^{2}-6 \lambda+9=0$, so $\lambda=3,3$ and

$$
y_{h}(t)=C_{1} \mathrm{e}^{3 t}+C_{2} t \mathrm{e}^{3 t}
$$

We can further break up the particular part- Our guess using $6 t^{2}$ would be:

$$
y_{p_{1}}(t)=A t^{2}+B t+C
$$

and for $-12 t \mathrm{e}^{3 t}$, we'll need to multiply by t^{2} :

$$
y_{p_{2}}(t)=t^{2}(D t+E) \mathrm{e}^{3 t}
$$

5. Classify the origin using the Poincaré Diagram and solve using eigenvectors/eigenvalues, then provide a sketch of the phase portrait:

$$
\mathbf{Y}^{\prime}(t)=\left[\begin{array}{cc}
-1 & 2 \\
-2 & -1
\end{array}\right] \mathbf{Y}
$$

SOLUTION: The trace is -2 , the determinant is 5 and the discriminant is $4-4 \cdot 5=-16$. Therefore, the origin is a spiral sink. For the eigenvalues/eigenvectors, we could use these values, but we'll start from scratch as a reminder:

$$
\left|\begin{array}{cc}
-1-\lambda & 2 \\
-2 & -1-\lambda
\end{array}\right|=\lambda^{2}+2 \lambda+5=0 \quad \Rightarrow \quad(\lambda+1)^{2}=-4 \quad \rightarrow \quad \lambda=-1 \pm 2 i
$$

Using $\lambda=-1+2 i$, we get an eigenvector:

$$
(-1-(-1+2 i)) v_{1}+2 v_{2}=0 \quad \Rightarrow \quad \mathbf{v}=\left[\begin{array}{c}
2 \\
2 i
\end{array}\right] \quad \text { or } \mathbf{v}=\left[\begin{array}{l}
1 \\
i
\end{array}\right]
$$

We need the real and imaginary parts of $\mathrm{e}^{\lambda t} \mathbf{v}$, which are:

$$
y(t)=C_{1} \mathrm{e}^{-t}\left[\begin{array}{c}
\cos (2 t) \\
-\sin (2 t)
\end{array}\right]+C_{2} \mathrm{e}^{-t}\left[\begin{array}{c}
\sin (2 t) \\
\cos (2 t)
\end{array}\right]
$$

6. Solve:
(a) $y^{\prime}=-\frac{y}{1+t}+t^{2}$

SOLUTION: This equation is linear- Use an integrating factor:

$$
y^{\prime}+\frac{1}{1+t} y=t^{2} \quad \text { so that } \mathrm{e}^{\int p(t) d t}=1+t
$$

The solution is given by:

$$
y(t)=\frac{\frac{1}{4} t^{4}+\frac{1}{3} t^{3}+C}{1+t}
$$

(b) $y^{\prime}=y(3-2 y)$

SOLUTION: This equation is autonomous (actually, separable):

$$
\begin{gathered}
\int \frac{1}{y(3-2 y)} d y=\int d t \quad \Rightarrow \quad \int \frac{1}{3} \frac{1}{y}+\frac{2}{3} \frac{1}{3-2 y} d y=t+C \\
\frac{1}{3} \ln (y)-\frac{1}{3} \ln (3-2 y)=t+C \quad \Rightarrow \quad \frac{y}{3-2 y}=A \mathrm{e}^{3 t} \quad \Rightarrow \quad y(t)=\frac{3 A \mathrm{e}^{3 t}}{1+2 A \mathrm{e}^{3 t}}
\end{gathered}
$$

(c) $t \frac{d y}{d t}-(1+t) y=t y^{2} \quad$ First, use the substitution: $u=y^{-1}$ to get a DE in u.

SOLUTION: Using the suggested substitution, we can write $y=1 / u$, so $y^{\prime}=-u^{\prime} / u^{2}$, so

$$
\frac{-t}{u^{2}} u^{\prime}-(1+t) \frac{1}{u}=\frac{t}{u^{2}}
$$

Multiply both sides by $-u^{2} / t$ to get the coefficient of u^{\prime} equal to one, and we have our linear DE:

$$
u^{\prime}+\frac{1+t}{t} u=-1 \quad \Rightarrow \quad \mathrm{e}^{\int p(t) d t}=t \mathrm{e}^{t}
$$

Now,

$$
\left(t \mathrm{e}^{t} u\right)^{\prime}=-t \mathrm{e}^{t} \quad \Rightarrow \quad t \mathrm{e}^{t} u=-t \mathrm{e}^{t}+\mathrm{e}^{t}+C
$$

SO

$$
u(t)=-1+\frac{1}{t}+\frac{C \mathrm{e}^{-t}}{t} \Rightarrow y(t)=\frac{t}{1-t+C \mathrm{e}^{-t}}
$$

7. Solve for the Laplace Transform, $Y(s)$, of the solution $y(t)$ (do not invert the transform):

$$
y^{\prime \prime}+6 y^{\prime}+5 y=t-t^{2} u_{2}(t), \quad y(0)=1, y^{\prime}(0)=0
$$

SOLUTION: You might note that $\mathcal{L}\left(u_{2}(t) t^{2}\right)$ should be done on the side, since

$$
f(t-2)=t^{2} \quad \Rightarrow \quad f(t)=(t+2)^{2}=t^{2}+4 t+4
$$

Therefore,

$$
\mathcal{L}\left(u_{2}(t) t^{2}\right)=\mathrm{e}^{-2 s}\left(\frac{2}{s^{3}}+\frac{4}{s^{2}}+\frac{4}{s}\right)
$$

The rest of the pieces are straightforward:

$$
\left(s^{2}+6 s+5\right) Y(s)=\frac{1}{s^{2}}-2 \mathrm{e}^{-2 s} \frac{2 s^{2}+2 s+1}{s^{3}}+s+6
$$

so that

$$
Y(s)=\frac{1}{s^{2}\left(s^{2}+6 s+5\right)}-2 \mathrm{e}^{-2 s} \frac{2 s^{2}+2 s+1}{s^{3}\left(s^{2}+6 s+5\right)}+\frac{s+6}{s^{2}+6 s+5}
$$

8. Compute $\mathcal{L}^{-1}\left(\frac{s}{s^{2}-10 s+29}\right)$

SOLUTION: Completing the square in the denominator,

$$
\frac{s}{s^{2}-10 s+25+4}=\frac{s}{(s-5)^{2}+2^{2}}=\frac{s-5}{(s-5)^{2}+2^{2}}+\frac{5}{2} \frac{2}{(s-5)^{2}+2^{2}}
$$

so that the inverse Laplace transform is given by

$$
\mathrm{e}^{5 t} \cos (2 t)+\frac{5}{2} \mathrm{e}^{5 t} \sin (2 t)
$$

9. Write the solution to the following DE in terms of $g(t): y^{\prime \prime}+4 y=g(t), y(0)=3, y^{\prime}(0)=-1$.

SOLUTION: We can do this via the Laplace transform:

$$
s^{2} Y-3 s+1+4 Y=G(s) \quad \Rightarrow \quad\left(s^{2}+4\right) Y(s)=G(s)+3 s-1 \quad \Rightarrow \quad Y(s)=G(s) \frac{1}{s^{2}+4}+\frac{3 s-1}{s^{2}+4}
$$

For the second term,

$$
\frac{3 s-1}{s^{2}+4}=3 \frac{s}{s^{2}+4}-\frac{1}{2} \frac{2}{s^{2}+4}
$$

so that the inverse Laplace transform yields the following solution:

$$
y(t)=3 \cos (2 t)-\frac{1}{2} \sin (2 t)+g(t) * \frac{1}{2} \sin (2 t)
$$

10. Given the system of equations below, describe (using the Poincaré Diagram) how the classification of the origin changes with α.

$$
\mathbf{Y}^{\prime}=\left[\begin{array}{cc}
\alpha & 1 \\
-2 & 0
\end{array}\right] \mathbf{Y}
$$

We see that $\operatorname{Tr}(A)=\alpha, \operatorname{det}(A)=2$, and $\Delta=\alpha^{2}-8$. Algebraically, we see that:

$$
\begin{array}{ccccc}
\operatorname{Tr}(A)=\alpha & - & - & + & + \\
\operatorname{det}(A)=2 & + & + & + & + \\
\Delta=\alpha^{2}-8 & + & - & - & + \\
& \alpha<-\sqrt{8} & -\sqrt{8}<\alpha<0 & 0<\alpha<\sqrt{8} & \alpha>\sqrt{8} \\
& \text { Sink } & \text { Spiral } & \text { Spiral } & \text { Source } \\
& & \text { Sink } & \text { Source } &
\end{array}
$$

We also have $\alpha=-\sqrt{8}$ and $\alpha=\sqrt{8}$ correspond to degenerate sink/source respectively, and if $\alpha=0$, we have a center.

11. Suppose that our mass-spring system is given by $y^{\prime \prime}+3 y^{\prime}+y=\cos (\omega t)$.
(a) Is there any value of ω that would give us resonance? No resonance. Beating? No beating.
(b) Find the value of ω that gives the maximum amplitude for the particular solution.

SOLUTION: When we complexify and solve using $y_{p}=A \mathrm{e}^{i \omega t}$, we get:

$$
A=\frac{1}{\left(1-\omega^{2}\right)+3 \omega i} \Rightarrow|A|=\frac{1}{\sqrt{\left(1-\omega^{2}\right)^{2}+9 \omega^{2}}}
$$

If we differentiate, we find that there are no real values of ω that will make the derivative equal zero, so there is no maximum. I didn't mean to do that, but it is worth thinking about- If we had switched the damping coefficient and spring constant so that $y^{\prime \prime}+y^{\prime}+3 y=\cos (\omega t)$, there would have been a solution- In this case, there was too much damping!
12. The graph below is $y^{\prime}=f(y)$.
(a) Locate and classify all equilibria.

Equilibria are at $y=0,1,2,3$.
(b) Provide a sketch of the direction field.

See sketch.
(c) Give one interval on which $y(t)$ is concave up.

See sketch.
(d) True or False? The solution $y(t)$ may be periodic.

False- y^{\prime} does not depend on t, which would need to be true if y was periodic.

