## Math 244 Sample Final B

Show all your work! A table of Laplace transforms is provided.

1. Short Answer:
(a) Suppose that $y^{\prime}=\mathrm{e}^{y}+\frac{t^{2}}{\mathrm{e}^{y}}$. Substitute $u=\mathrm{e}^{y}$ to get a differential equation in $u$.
(b) Use the method of undetermined coefficients to give the form of the particular solution(s) to the following (DO NOT solve for the coefficients!):

$$
y^{\prime \prime}-6 y^{\prime}+9 y=6 t^{2}-12 t \mathrm{e}^{3 t}+t \sin (2 t)
$$

2. Short Answer, Laplace Transforms:
(a) Define the Laplace transform for $f(t): F(s)=$
(b) Compute the inverse Laplace transform of $\frac{s}{s^{2}-10 s+29}$
(c) Compute the Laplace transform of the following (leave your answer as $Y(s)=\ldots$ )

$$
y^{\prime \prime}+6 y^{\prime}=t^{2} u_{2}(t) \quad y(0)=1 \quad y^{\prime}(0)=0
$$

3. Given $y^{\prime}=y-y^{2}$, answer the following without solving the DE :
(a) If $y(0)=2$, what is the limit $t \rightarrow \infty$ of $y(t)$ ?
(b) Find where $y(t)$ is increasing, decreasing.
(c) Find where $y(t)$ is concave up, concave down.
4. Suppose you have a tank of brine containing 300 gallons of water with a concentration of $1 / 6$ pounds of salt per gallon. There is brine pouring into the tank at a rate of 3 gallons per minute, and it contains 2 pounds of salt per gallon. The well-mixed solution leaves at 2 gallons per minute. (i) Write the initial value problem for the amount of salt in the tank at time $t$, and (ii) solve it.
5. Classify the origin using the Poincaré Diagram and solve the system using eigenvectors/eigenvalues:

$$
\mathbf{Y}^{\prime}(t)=\left[\begin{array}{cc}
-1 & 2 \\
-2 & -1
\end{array}\right] \mathbf{Y}
$$

6. Solve the same system as in Problem (5), but solve it by first writing an equivalent second order differential equation (be sure to solve for both $y_{1}(t)$ and $y_{2}(t)$ ).
7. Find the series expansion for the following, up to and including the $t^{4}$ term, where

$$
y^{\prime \prime}-t y^{\prime}+y=0 \quad y(1)=1 \quad y^{\prime}(1)=2
$$

8. Solve:
(a) $y^{\prime}=y(1-y)$
(b) $t y^{\prime}+t y=1-y$
(c) $y^{\prime \prime}+2 y^{\prime}=t^{2}$
9. Let

$$
\begin{aligned}
& x^{\prime}=2 x-x^{2}-x y \\
& y^{\prime}=y-x y
\end{aligned}
$$

(a) If $x(t)$ and $y(t)$ are populations of animals, is this differential equation a version of "predator-prey" or "competing species"? Explain- In particular, discuss the assumptions on how the populations increase/decrease in the absence of the other.
(b) Find and classify all equilibrium solutions.
(c) Using your previous answers, if $x_{0}=\frac{1}{2}$, and $y_{0}=\frac{1}{8}$, where does $(x(t), y(t))$ go as $t \rightarrow \infty$ ?

