Math 244 Sample Final B Solutions

1. Short Answer:
(a) Suppose that $y^{\prime}=\mathrm{e}^{y}+\frac{t^{2}}{\mathrm{e}^{y}}$. Substitute $u=\mathrm{e}^{y}$ to get a differential equation in u.

SOLUTION: With the given substitution, $\frac{d u}{d t}=\mathrm{e}^{y} \frac{d y}{d t}=u \frac{d y}{d t}$, so:

$$
\frac{u^{\prime}}{u}=u+\frac{t^{2}}{u} \quad \Rightarrow \quad u^{\prime}=u^{2}+t^{2}
$$

(b) Use the method of undetermined coefficients to give the form of the particular solution(s) to the following (DO NOT solve for the coefficients!):

$$
y^{\prime \prime}-6 y^{\prime}+9 y=6 t^{2}-12 t \mathrm{e}^{3 t}+t \sin (2 t)
$$

SOLUTION: Split the guesses into 3, note that $y_{h}=\mathrm{e}^{3 t}\left(C_{1}+C_{2} t\right)$:

$$
y_{p_{1}}=A t^{2}+B t+C \quad y_{p_{2}}=t^{2}(A t+B) \mathrm{e}^{3 t} \quad y_{p_{3}}=(A t+B) \cos (2 t)+(C t+D) \sin (2 t)
$$

2. Short Answer, Laplace Transforms:
(a) Define the Laplace transform for $f(t): F(s)=\int_{0}^{\infty} \mathrm{e}^{-s t} f(t) d t$
(b) Compute the inverse Laplace transform of $\frac{s}{s^{2}-10 s+29}$

$$
\frac{s}{(s-5)^{2}+2^{2}}=\frac{s-5}{(s-5)^{2}+2^{2}}+\frac{5}{2} \frac{2}{(s-5)^{2}+2^{2}} \quad \rightarrow \quad \mathrm{e}^{5 t} \cos (2 t)+\frac{5}{2} \mathrm{e}^{5 t} \sin (2 t)
$$

(c) Compute the Laplace transform of the following (leave your answer as $Y(s)=\ldots$)

$$
y^{\prime \prime}+6 y^{\prime}=t^{2} u_{2}(t) \quad y(0)=1 \quad y^{\prime}(0)=0
$$

First, note that the Laplace transform of the right side will have you take $f(t-2)=t^{2}$, so that $f(t)=(t+2)^{2}=t^{2}+4 t+4$. Therefore,

$$
Y(s)=\frac{\mathrm{e}^{-2 s}\left(\frac{2}{s^{3}}+\frac{4}{s^{2}}+\frac{4}{s}\right)}{s^{2}+6 s}+\frac{s+6}{s^{2}+6 s}
$$

3. Given $y^{\prime}=y-y^{2}$, answer the following without solving the DE :

SOLUTION: See the graph for the details.

(a) If $y(0)=2$, what is the limit $t \rightarrow \infty$ of $y(t)$? SOLN: $y(t) \rightarrow 1$
(b) Find where $y(t)$ is increasing, decreasing.

SOLN: The function $y(t)$ is increasing if $0<y<1$, decreasing if $y<0$ or $y>1$.
(c) Find where $y(t)$ is concave up, concave down.

SOLN: Recall that $\frac{d^{2} y}{d t^{2}}=\frac{d f}{d y} \frac{d y}{d t}$, so we have:
If $y<0$, then y is concave down. If $0<y<1 / 2$, the y is concave up, and if $1 / 2<y<1$, then y is concave down. Finally, if $y>1$, then y is concave up.
4. Suppose you have a tank of brine containing 300 gallons of water with a concentration of $1 / 6$ pounds of salt per gallon. There is brine pouring into the tank at a rate of 3 gallons per minute, and it contains 2 pounds of salt per gallon. The well-mixed solution leaves at 2 gallons per minute. (i) Write the initial value problem for the amount of salt in the tank at time t, and (ii) solve it.
SOLUTION: Sorry- This is the same problem as Version A. Try another one from the text, like \#27, p. 135 (Section 1.9).
5. Classify the origin using the Poincaré Diagram and solve the system using eigenvectors/eigenvalues:

$$
\mathbf{Y}^{\prime}(t)=\left[\begin{array}{cc}
-1 & 2 \\
-2 & -1
\end{array}\right] \mathbf{Y}
$$

SOLUTION: Sorry- This is the same problem as Version A. Try a couple from \#27-32 on page 380.
6. Solve the same system as in Problem (5), but solve it by first writing an equivalent second order differential equation (be sure to solve for both $y_{1}(t)$ and $y_{2}(t)$).
SOLUTION: First, we'll re-write it in system form, then we'll convert it to second order:

$$
\begin{aligned}
& y_{1}^{\prime}=-y_{1}+2 y_{2} \\
& y_{2}^{\prime}=-2 y_{1}-y_{2}
\end{aligned} \quad \Rightarrow \quad(1 / 2)\left(y_{1}^{\prime \prime}+y_{1}^{\prime}\right)=-2 y_{1}-(1 / 2)\left(y_{1}^{\prime}+y_{1}\right)
$$

Multiplying the DE by 2 , we get $y_{1}^{\prime \prime}+2 y_{1}^{\prime}+5 y_{1}=0$, from which we get the characteristic equation $\lambda^{2}+2 \lambda+5=0$, or

$$
\lambda=-1 \pm 2 i
$$

so that

$$
y_{1}(t)=\mathrm{e}^{-t}\left(C_{1} \cos (2 t)+C_{2} \sin (2 t)\right)
$$

To find $y_{2}(t)$, take $\frac{1}{2}\left(y_{1}^{\prime}+y_{1}\right)$ - In this case, that's a bit of algebraic work- You might try it for practice if you have time.
7. Find the series expansion for the following, up to and including the t^{4} term, where

$$
y^{\prime \prime}-t y^{\prime}+y=0 \quad y(1)=1 \quad y^{\prime}(1)=2
$$

SOLUTION: First note that we are evaluating at $t=1$ instead of $t=0$. This means that our power series solution is of the form:

$$
y(t)=a_{0}+a_{1}(t-1)+a_{2}(t-1)^{2}+a_{3}(t-1)^{3}+\cdots
$$

And because we have a second order equation, we have $y(1)=a_{0}$ and $y^{\prime}(1)=a_{1}$ as arbitrary constants (so we should be able to write all other constants in terms of these two).
Now proceed as usual to compute the derivatives of y at $t=1$:

$$
\begin{gathered}
y^{\prime \prime}=t y^{\prime}-y \quad \Rightarrow \quad y^{\prime \prime}(1)=y^{\prime}(1)-y(1)=a_{1}-a_{0} \\
y^{\prime \prime \prime}=y^{\prime}+t y^{\prime \prime}-y^{\prime}=t y^{\prime \prime} \quad \Rightarrow \quad y^{\prime \prime \prime}(1)=a_{1}-a_{0}
\end{gathered}
$$

$$
y^{(4)}=y^{\prime \prime}+t y^{\prime \prime \prime} \Rightarrow y^{(4)}(1)=\left(a_{1}-a_{0}\right)+\left(a_{1}-a_{0}\right)=2\left(a_{1}-a_{0}\right)
$$

Using the fact that $a_{n}=y^{(n)}(1) / n$!, we can write the series as:

$$
y(t) \approx a_{0}+a_{1}(t-1)+\frac{a_{1}-a_{0}}{2}(t-1)^{2}+\frac{a_{1}-a_{0}}{3!}(t-1)^{3}+\frac{2\left(a_{1}-a_{0}\right)}{4!}(t-1)^{4}+\cdots
$$

8. Solve:
(a) $y^{\prime}=y(1-y)$

SOLUTION: This is separable (as well as autonomous):
$\int \frac{1}{y(1-y)} d y=\int d t \quad \Rightarrow \quad \ln (y)-\ln (1-y)=t+C \quad \Rightarrow \quad \frac{y}{1-y}=A \mathrm{e}^{t} \quad \Rightarrow \quad y(t)=\frac{A \mathrm{e}^{t}}{1+A \mathrm{e}^{t}}$
(b) $t y^{\prime}+t y=1-y$

SOLUTION: Linear with integrating factor. Rewrite so that

$$
y^{\prime}+\left(1+\frac{1}{t}\right) y=\frac{1}{t}
$$

The integrating factor is then $t \mathrm{e}^{t}$:

$$
\left(t \mathrm{e}^{t} y\right)^{\prime}=\mathrm{e}^{t} \quad \Rightarrow \quad y(t)=\frac{1+C \mathrm{e}^{-t}}{t}
$$

(c) $y^{\prime \prime}+2 y^{\prime}=t^{2}$

SOLUTION: Second order with a forcing function. Solving the homogeneous equation $y^{\prime \prime}+2 y^{\prime}=0$, we have

$$
\lambda^{2}+2 \lambda=0 \quad \Rightarrow \quad \lambda=0, \lambda=-2 \quad \Rightarrow \quad y_{h}(t)=C_{1}+C_{2} \mathrm{e}^{-2 t}
$$

For the particular solution, $y_{p}=A t^{2}+B t+C$, but since a constant is part of the homogeneous solution, multiply by t so that $y_{p}=A t^{3}+B t^{2}+C t$. Put that into the DE, we should find that

$$
y_{p}(t)=\frac{1}{6} t^{3}-\frac{1}{4} t^{2}+\frac{1}{4} t
$$

For the full solution, we have

$$
y(t)=C_{2} \mathrm{e}^{-t}+C_{1}+\frac{1}{6} t^{3}-\frac{1}{4} t^{2}+\frac{1}{4} t
$$

9. Let

$$
\begin{aligned}
& x^{\prime}=2 x-x^{2}-x y \\
& y^{\prime}=y-x y
\end{aligned}
$$

(a) If $x(t)$ and $y(t)$ are populations of animals, is this differential equation a version of "predator-prey" or "competing species"? Explain- In particular, discuss the assumptions on how the populations increase/decrease in the absence of the other.
SOLUTION: This is an examples of competing species- That is, when the populations interact, both rates of change are negative. Further, in the absence of y, the rate of change of x is modeled after a logistic equation. In the absense of x, y is modeled after exponential growth.
(b) Find and classify all equilibrium solutions.

SOLUTION: From the second equation, $y=0$ or $x=1$. If $y=0$ for the second equation, then in the first we have $x(2-x)=0$. Therefore, we have $(0,0)$ and $(2,0)$ for equilibria.

If $x=1$ in the second equation, in the first we have $1-y=0$, so $y=1$. Thus, $(1,1)$ is the third solution.
To classify equilibria, we need the Jacobian matrix:

$$
J(x, y)=\left[\begin{array}{ll}
f_{x} & f_{y} \\
g_{x} & g_{y}
\end{array}\right]=\left[\begin{array}{rr}
2-2 x-y & -x \\
-y & 1-x
\end{array}\right]
$$

At the three points: $(0,0),(2,0)$ and $(1,1)$ respectively:

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{rr}
-2 & -2 \\
0 & -1
\end{array}\right] \quad\left[\begin{array}{rr}
-1 & -1 \\
-1 & 0
\end{array}\right]
$$

Our analysis should suggest a SOURCE, a SADDLE, and a SINK (respectively).
(c) Using your previous answers, if $x_{0}=\frac{1}{2}$, and $y_{0}=\frac{1}{8}$, where does $(x(t), y(t))$ go as $t \rightarrow \infty$? SOLUTION: Consider a brief sketch of the direction field (see below). It's clear that the point should be attracted to the sink at $(2,0)$ and not to the saddle at $(1,1)$. Therefore, we conclude that, as time gets larger and larger, $x(t) \rightarrow 2$ and $y(t)$ dies off.

