Sample Final Exam C

1. Let $y^{\prime \prime}-t y^{\prime}-y=0$. If $y(1)=1$ and $y^{\prime}(1)=1$, write the power series for y up to and including the fourth order term.
2. Short Answer:
(a) Convert $-1+i$ to polar form.
(b) Find the Laplace transform of $\delta_{2}(t) t^{2}$.
(c) Find $t * \mathrm{e}^{t}$ using the definition of the convolution, and verify your computation using the Laplace transform.
(d) Convert the third order DE to a system of first order: $y^{\prime \prime \prime}-t^{2} y^{\prime \prime}+2 y=0$
(e) Convert the following system to an equivalent second order DE: $\begin{aligned} & x_{1}^{\prime}=3 x_{1}+x_{2} \\ & x_{2}^{\prime}=x_{1}+3 x_{2}\end{aligned}$
3. Show, with the substitution $v=y / x$, that the following DE become linear (in v): $\frac{d y}{d x}=\frac{4 y-3 x}{2 x-y}$
4. Consider the IVP: $y^{\prime}=\frac{t}{y-y t^{2}}, y(0)=4$.

- What does the Existence and Uniqueness theorem say about the solution(s) to the IVP (be specific in what you're computing).
- Solve the IVP. You may leave your answer in implicit form.

5. Compute the inverse Laplace transform of $\frac{\mathrm{e}^{2 s}(s+5)}{s^{2}+2 s+3}$
6. Solve:
(a) $t y^{\prime}+2 y=\sin (t)$ (you may assume $\left.t>0\right)$.
(b) $y^{\prime}+y^{2} \sin (x)=0$
(c) $y^{\prime \prime}-5 y^{\prime}=t^{2}$
(d) $\mathbf{Y}^{\prime}=\left[\begin{array}{rr}5 & -1 \\ 3 & 1\end{array}\right] \mathbf{Y}$
7. Solve $y^{\prime \prime}+y=g(t), y(0)=0, y^{\prime}(0)=1$, where $g(t)=\left\{\begin{aligned} t / 2 & \text { if } 0 \leq t \leq 6 \\ 3 & \text { if } t \geq 6\end{aligned}\right.$
8. The air in a small room, 20 ft by 5 ft by 10 ft is 3% carbon monoxide. Starting at $t=0$, air containing 1% carbon monoxide is blown into the room at a rate of $100 \mathrm{ft}^{3}$ per hour, and the well mixed air flows out through a vent at the same rate.
(a) Write the IVP modeling the amount of carbon monoxide in the room at time t.
(b) Give a graphical analysis of the solution. In particular, what happens in the room over the long term.
(c) Solve the IVP.
9. Consider $y^{\prime \prime}+\frac{1}{10} y^{\prime}+y=\cos (\omega t)$.

- Does the solution have beating or resonance? Give a short reason.
- Consider the homogeneous differential equation. Is it overdamped, underdamped, or critically damped?
- For the forced system with $\omega=1$, find the particular solution.
- Going back to the general ω, find the amplitude of the particular solution (in terms of ω).

10. Let

$$
\begin{aligned}
x^{\prime} & =1-x^{2}-y^{2} \\
y^{\prime} & =2 x y
\end{aligned}
$$

(a) Draw the nullclines and sketch the direction field along the nullclines.
(b) Find and classify all equilibria (Poincaré)

