## Solutions: More Practice with Modeling

1. A mass weighing 4 lb stretches a spring 2 in . Suppose that the mass is displaced an additional 6 in the positive direction and released. The mass is in a medium that exerts a viscous resistance of 6 lb when the mass has a velocity of $3 \mathrm{ft} / \mathrm{s}$. Formulate the IVP that governs the motion of the mass. (Hint: All units should be consistent. When working with US units, use pounds, feet and seconds.)
SOLUTION: Remember to change units to pounds, feet and second. The first piece of information is given to find the spring constant. Use the relationship: $m g-k L=0$, and the fact that pounds is already $m g$ to get:

$$
4-k \frac{1}{6}=0 \quad \Rightarrow \quad k=24
$$

Next, we need the damping constant, $\gamma$. We know that damping is proportional to the velocity, and the value of $\gamma$ is non-negative, so we take the signs to be the appropriate values:

$$
F_{\text {damping }}=-\gamma y^{\prime}(t) \quad \Rightarrow \quad 6=\gamma 3 \quad \Rightarrow \quad \gamma=2
$$

For the mass, remember that "pounds" is $m g$, and $g=32$ (I would give you this value on an exam/quiz). For the mass,

$$
m g=4 \quad \Rightarrow \quad m=\frac{4}{g}=\frac{4}{32}=\frac{1}{8}
$$

To finish, we have an initial position of $1 / 2$ feet and zero initial velocity:

$$
\frac{1}{8} y^{\prime \prime}+2 y^{\prime}+24 y=0 \quad y(0)=\frac{1}{2} \quad y^{\prime}(0)=0
$$

2. Suppose we consider a mass-spring system with no damping (the damping constant is then 0 ), so that the differential equation expressing the motion of the mass can be modeled as

$$
m u^{\prime \prime}+k u=0
$$

Find value(s) of $\beta$ so that $A \cos (\beta t)$ and $B \sin (\beta t)$ are each solutions to the homogeneous equation (for arbitrary values of $A, B$ ).
SOLUTION: We subsitute $u=A \cos (\beta t)+B \sin (\beta t)$ into the differential equation:

$$
m\left(-\beta^{2} A \cos (\beta t)-\beta^{2} B \sin (\beta t)+k(A \cos (\beta t)+B \sin (\beta t))=0\right.
$$

We need the coefficient in front on $\cos (\beta t)$ to be zero:

$$
-m \beta^{2} A+k A=0
$$

and the coefficient in front of $\sin (\beta t)$ to be zero:

$$
-m \beta^{2} B+k B=0
$$

Take either equation to see that $\beta=\sqrt{\frac{k}{m}}$ (we'll only take the positive root).
3. A mass weighing 2 lb stretches a spring 6 in . If the mass is pulled down an additional 3 in and then released, and if there is no damping, determine the IVP that governs the motion of the mass. (You might re-read the hint for (1))
SOLUTION (remember units): Given the first line, we can find the value of the spring constant.

$$
m g-k L=0 \quad \Rightarrow \quad 2-k \frac{1}{2}=0 \quad \Rightarrow \quad k=4
$$

For the mass,

$$
m g=2 \quad \Rightarrow \quad m=\frac{2}{g}=\frac{2}{32}=\frac{1}{16}
$$

Now we have the IVP:

$$
\frac{1}{16} y^{\prime \prime}+4 y=0 \quad y(0)=\frac{1}{4}, \quad y^{\prime}(0)=0
$$

4. A mass of 20 grams stretches a spring 5 cm . Suppose tha the mass is attached to a viscous damper with a constant damping constant of $400 \mathrm{dyn}-\mathrm{s} / \mathrm{cm}$ (note: a dyne is a unit of force using centimeters-grams- seconds for units). If the mass is pulled down an additional 2 cm then released, find the IVP that governs the motion of the mass.
SOLUTION: The additional note tells us we can stick with the given units, but beware of $g$, which is normally $9.8 \mathrm{~m} / \mathrm{s}^{2}$, now it would be $980 \mathrm{~cm} / \mathrm{s}^{2}$. Given that,

$$
m g-k L=0 \quad \Rightarrow \quad(20)(980)-k(5)=0 \quad \Rightarrow \quad k=3920
$$

The damping constant is given as $\gamma=400$, so now we put the equation together:

$$
20 y^{\prime \prime}+400 y^{\prime}+3920 y=0 \quad y(0)=2, \quad y^{\prime}(0)=0
$$

5. For exercises 1,3 and 4 above, convert the mass-spring second order DE into a system of first order equations, then analyze the solutions using the HPGSystemSolver software (in DETools).
SOLUTION: When converting to a linear system $Y^{\prime}=A Y$, where $A$ is:
(1) $\left[\begin{array}{rr}0 & 1 \\ -192 & -16\end{array}\right]$
(3) $\left[\begin{array}{rr}0 & 1 \\ -64 & 0\end{array}\right]$
(4) $\left[\begin{array}{rr}0 & 1 \\ -196 & -20\end{array}\right]$



6. A mass weighing 8 lbs stretches a spring $\frac{3}{2} \mathrm{in}$. The mass is attached to a damper with coefficient $\gamma$. Using the ansatz to get the characteristic equation for the second order linear, homogeneous, DE , find the value of $\gamma$ at which we get one single real solution (to the characteristic equation).
SOLUTION: As usual, the first line is used for both the spring constant $k$ and the value of $m$ :

$$
m g-k L=0 \quad \Rightarrow \quad 8-k \frac{1}{8}=0 \quad \Rightarrow \quad k=64
$$

We also have:

$$
8=m g \quad \Rightarrow \quad m=\frac{8}{32}=\frac{1}{4}
$$

The DE is now:

$$
\frac{1}{4} y^{\prime \prime}+\gamma y^{\prime}+64 y=0 \quad \Rightarrow \quad y^{\prime \prime}+4 \gamma y^{\prime}+256=0
$$

The ansatz is $y=\mathrm{e}^{s t}$. Substituting this into the DE, we get

$$
s^{2}+4 \gamma s+256=0
$$

We can use the quadratic formula to solve for $s$, but note that we want only ONE real solution- That happens when the discriminant is 0 :

$$
b^{2}-4 a c=0 \quad \Rightarrow \quad 16 \gamma^{2}-4(256)=0 \quad \Rightarrow \quad \gamma^{2}=64
$$

so that $\gamma=8$ (only the positive one).

