Post 4.2

Analysis of the ODE: Given

$$
a y^{\prime \prime}+b y^{\prime}+c y=\cos (\omega t)
$$

We know that the response will be a homogeneous part, y_{h}, and a particular part, y_{p}. Since in our physical model, $b \neq 0$, then the particular part will be of the form

$$
A \cos (\omega t)+B \sin (\omega t)=R \cos (\omega t-\delta)
$$

where $R=\sqrt{A^{2}+B^{2}}$ and period is $2 \pi / \omega$.
Given two graphs, try to determine which graph goes with which equation:

$$
y^{\prime \prime}+5 y^{\prime}+2 y=\cos (2 t) \quad y^{\prime \prime}+y^{\prime}+3 y=\cos (2 t)
$$

HINT: Consider the period and amplitude of the particular part of the solution first, then consider the solution to the homogeneous part, if necessary.

