Review Questions, Exam 2

1. A weight of 4 lbs is attached to the end of a spring that is then stretched 3 inches. The spring is then attached to a dashpot that provides 6 lbs of resistance for each ft / s of velocity. If the spring is pushed up 6 inches and released, give the second order linear differential equation that models the position of the mass. (If needed, g is $32 \mathrm{ft} / \mathrm{s}^{2}$ in US Customary units)
2. Consider the system below, with two solution curves shown in the phase plane.

(a) Find the equilibrium solutions.
(b) Given the phase plane from HPGSystemSolver with starting points A and B as shown above, sketch the solution in the (t, x) and (t, y) planes.
3. Consider the system of differential equations: $\mathbf{Y}^{\prime}=\left[\begin{array}{rl}0 & 4 \\ -1 & 0\end{array}\right] \mathbf{Y}$
(a) Find the eigenvalues to this system.
(b) Find the general solution of this system.
(c) Find the solution that satisfies $\mathbf{Y}(0)=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
(d) Sketch the phase plane for this system.
4. Consider the family of systems of differential equations given by:

$$
\text { (a) } \quad \mathbf{Y}^{\prime}=\left[\begin{array}{rr}
a & 1 \\
-1 & a
\end{array}\right] \mathbf{Y} \quad \text { (b) } \quad \mathbf{Y}^{\prime}=\left[\begin{array}{ll}
a & 1 \\
a & a
\end{array}\right] \mathbf{Y}
$$

Use the Poincare classfication to determine how the equilibrium changes. Begin by drawing the tracedeterminant plane, then track where you are on the graph.
5. Given the mass-spring system with unit mass ($m=1$), spring constant $k>0$ and damping $b \geq 0$, write the second order linear homogeneous differential equation describing the motion of the mass.
(a) Convert the differential equation into a system of first order equations in the form $\mathbf{Y}^{\prime}=A \mathbf{Y}$ (that is, find A).
(b) Continuing with the previous question, find the eigenvalues of A.
(c) Continuing, state all the values of b, k so that the system has complex eigenvalues.
(d) State all the values of b, k for which the system has a saddle at the origin.
6. Below is a coupled pair of second order equations in x, y. Convert it to a linear system of four first order equations. You might let $u_{1}, u_{2}, u_{3}, u_{4}$ be your variables.

$$
\begin{aligned}
x^{\prime \prime}+2 x^{\prime}-y^{\prime}+x+4 y & =0 \\
y^{\prime \prime}+y^{\prime}+8 y-3 x & =0
\end{aligned}
$$

7. Solve: $\mathbf{Y}^{\prime}=A \mathbf{Y}, \mathbf{Y}(0)$ shown.
(a) $A=\left[\begin{array}{rr}-4 & 1 \\ 2 & -3\end{array}\right], \mathbf{Y}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Sketch the phase plane for this one.
(b) $A=\left[\begin{array}{ll}-4 & 4 \\ -1 & 0\end{array}\right], \mathbf{Y}(0)=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
