## Solutions to the Review Questions

## Short Answer/True or False

1. True or False, and explain:
(a) If $y^{\prime}=y+2 t$, then $0=y+2 t$ is an equilibrium solution.

False: This is an isocline associated with a slope of zero, and furthermore, $y=-2 t$ is not a solution, and it is not a constant.
(b) Let $\frac{d y}{d t}=1+y^{2}$. The Existence and Uniqueness theorem tells us that the solution (for any initial value) will be valid for all $t$. (If true, say why. If False, solve the DE).
False. The E \& U Theorem tells that a unique solution will exist for any initial condition (since $1+y^{2}$ and $2 y$ are continuous everywhere), but it does not say on what interval the solution will exist. For example, if we take $y(0)=y_{0}$ and solve, we get:

$$
\int \frac{d y}{1+y^{2}}=\int d t \Rightarrow \tan ^{-1}(y)=t+C \quad \Rightarrow \quad C=\tan ^{-1}\left(y_{0}\right)
$$

Therefore,

$$
y=\tan \left(t+\tan ^{-1}\left(y_{0}\right)\right)
$$

where

$$
-\frac{\pi}{2}<t+\tan ^{-1}\left(y_{0}\right)<\frac{\pi}{2}
$$

(so that the tangent function is invertible).
(c) Let $y^{\prime}=f(y)$. It is possible to have two stable equilibrium with no other equilibrium between them (you may assume $d f / d y$ is continuous- Consider what this means in the ( $y, y^{\prime}$ ) plane).
SOLUTION: (NOTE: I should have used the term SINK rather than STABLE- Hope that didn't confuse you! And we didn't need $f^{\prime}$ to be continuous, but rather $f$ (copy and paste erros)). I meant for you to some graphical analysis to solve this- See the graph below. The answer is no, not if $f$ is continuous.

(d) If $y^{\prime}=\cos (y)$, then the solutions are periodic.

FALSE. A function $y$ is periodic if it is periodic in $t$, and once a function increases (for example), it cannot decrease again (since the slopes along any horizontal line are constant).
(e) All autonomous equations are separable.

True. We can write $y^{\prime}=f(y) \cdot 1$, which is separable and $\int \frac{d y}{f(y)}=\int d t$.
2. Give the general solution, or solve the IVP:
(a) $\frac{d y}{d x}=\frac{x^{2}-2 y}{x}$

Linear: $y^{\prime}+\frac{2}{x} y=x$ Solve with an integrating factor of $x^{2}$ to get:

$$
y=\frac{1}{4} x^{2}+\frac{C}{x^{2}}
$$

(b) $\frac{d y}{d x}=2 \cos (3 x), y(0)=2$.

SOLUTION: Separable- Integrate directly then solve for $C$.

$$
y(x)=\frac{2}{3} \sin (3 x)+2
$$

(c) $y^{\prime}=\frac{1}{2} y, y(0)=2$.

SOLUTION: Separable- $y(t)=200 \mathrm{e}^{t / 2}$. The solution is valid for all time.
(d) $y^{\prime}=(1-2 x) y^{2}$ with $y(0)=-1 / 6$.

SOLUTION: Separable- Separate variables and integrate on both sides:

$$
-\frac{1}{y}=x-x^{2}+C \quad \Rightarrow \quad 6=0+0+C \quad \Rightarrow \quad y=\frac{1}{x^{2}-x-6}=\frac{1}{(x+2)(x-3)}
$$

The function $y$ has vertical asymptotes at $t=-2$ and $t=3$ which cuts time into three intervals.
We choose $-2<t<3$ since we need the interval on which $t=0$ is included.
(e) $y^{\prime}-\frac{1}{2} y=\mathrm{e}^{2 t} \quad y(0)=1$

This is linear (but not separable). $y(t)=\frac{2}{3} \mathrm{e}^{2 t}+\frac{1}{3} \mathrm{e}^{(1 / 2) t}$
(f) $y^{\prime}=\frac{1}{2} y(3-y)$

Autonomous (and separable). Integrate using partial fractions:

$$
\int \frac{1}{y(3-y)} d y=\frac{1}{2} \int d t \Rightarrow \frac{1}{3} \ln |y|-\frac{1}{3} \ln |3-y|=\frac{1}{2} t+C \quad \Rightarrow \quad \ln \left|\frac{y}{3-y}\right|=\frac{3}{2} t+C_{2}
$$

Therefore,

$$
\frac{y}{3-y}=A \mathrm{e}^{3 t / 2} \quad \Rightarrow \quad y(t)=\frac{3 A \mathrm{e}^{3 t / 2}}{1+A \mathrm{e}^{3 t / 2}}
$$

Notice that you could divide top and bottom by the expontial term to end up with:

$$
y(t)=\frac{3}{1+B \mathrm{e}^{-(3 / 2) t}}
$$

which some people prefer (its OK to leave your answer in the other form).
(g) $\sin (2 t) d t+\cos (3 y) d y=0$

Separable:

$$
\cos (3 y) d y=-\sin (2 t) d t \quad \Rightarrow \quad \int \cos (3 y) d y=-\int \sin (2 t) d t
$$

so that: $\frac{1}{3} \sin (3 y)=\frac{1}{2} \cos (2 t)+C$. Leave your answer in that form.
(h) $y^{\prime}=t y^{2}$

Separable: $y=\frac{1}{-(1 / 2) t^{2}+C}$
(i) $2 x y^{2}+2 y+\left(2 x^{2} y+2 x\right) y^{\prime}=0$

SOLUTION: Try to get it into factored form, then we can separate variables and solve.

$$
y^{\prime}=\frac{-2 y(x y+1)}{2 x(x y+1)}=\frac{-y}{x} \Rightarrow \int \frac{d y}{y}=-\int \frac{d x}{x} \Rightarrow \ln |y|=-\ln |x|+C \quad \Rightarrow \quad y=\frac{A}{x}
$$

(j) $x^{3} \frac{d y}{d x}=1-2 x^{2} y$.

SOLUTION: This one doesn't factor, but it is linear. We can see that by expressing it in standard form:

$$
\frac{d y}{d x}+\frac{2}{x} y=\frac{1}{x^{3}}
$$

The integrating factor is $x^{2}$ :

$$
\left(x^{2} y\right)^{\prime}=\int \frac{1}{x} d x \quad \Rightarrow \quad x^{2} y=\ln |x|+C \quad \Rightarrow \quad y=\frac{\ln |x|+C}{x^{2}}
$$

(k) $y^{\prime}=2(1+x)\left(1+y^{2}\right), y(0)=0$

SOLUTION: This is also separable:

$$
\int \frac{d y}{1+y^{2}}=\int 2(1+x) d x \Rightarrow \arctan (y)=(1+x)^{2}+C
$$

Solving now for $C$, we see that $0=1+C$, or $C=-1$. Continuing,

$$
y=\tan \left((1+x)^{2}-1\right)
$$

3. Construct a linear first order differential equation whose general solution is given by: $y=t+C / t^{2}$.

SOLUTION: Examing $y$ and $y^{\prime}$, we see that:

$$
y^{\prime}+\frac{2}{t} y=3
$$

Solving this from scratch, we get the desired solution.
4. Graphically, what does the Existence and Uniqueness theorem mean? For example, if you were looking at a set of solutions, what would indicate that the E \& U theorem did not apply?
Existence and Uniqueness will mean that two solution curves must never intersect.
5. Give a short derivation of Euler's Method. That is, given $y^{\prime}=f(t, y)$ is the DE, and we start at $y\left(t_{0}\right)=y_{0}$ with step size $\Delta t$, show how we get the next value, $y_{1}$. In particular, what is the assumption behind Euler's Method?
SOLUTION: (You should draw a sketch like we did in class). The main assumption is that $f\left(t_{0}, y_{0}\right)$ will stay constant on the interval $\left[t_{0}, t_{0}+\Delta t\right]$ (which it almost never will). In that case,

$$
y_{1}=y_{0}+f\left(t_{0}, y_{0}\right) \Delta t
$$

or in general,

$$
y_{k+1}=y_{k}+f\left(t_{k}, y_{k}\right) \Delta t
$$

6. Use Euler's Method to compute $y_{1}, y_{2}$ if $y(0)=1, \Delta t=1$ and $y^{\prime}=(y+1)(t+1)$. Do you think $y_{1}, y_{2}$ will be very close to the actual solution? Why or why not?
SOLUTION: To begin with, the actual solution will not be close to $y_{1}, y_{2}$ because $\Delta t$ is huge (value is 1). However, this is typically what we do when computing by hand:

$$
\begin{gathered}
y_{1}=1+(1+1)(0+1) \cdot 1=3 \\
y_{2}=3+(3+1)(1+1) \cdot 1=11
\end{gathered}
$$

7. Construct a model of population using the logistic equation, if the initial growth rate is approximately 2 , and the carrying capacity of the environment is approximately 100 .
SOLUTION: The general model is given by:

$$
y^{\prime}=k y\left(1-\frac{y}{N}\right)=2 y\left(1-\frac{y}{100}\right)
$$

8. Suppose I have a cup of coffee. When I enter a room ( $70^{\circ} \mathrm{F}$, constant), my coffee is at $110^{\circ}$ and one hour later, it is at $80^{\circ}$. Find a function that gives the temperature of my coffee at all $t \geq 0$.
SOLUTION: Newton's Law of Cooling states that: The rate of change of the temp of a body is proportional to the difference between the temp of the body and the environment. Thus, we can write:

$$
y^{\prime}=-k(y-T)
$$

where $k>0$ and $T$ is constant (environmental temp). We can solve this generally for $y$ :

$$
\int \frac{d y}{y-T}=-k \int d t \Rightarrow \ln |y-T|=-k t+C \quad \Rightarrow \quad y=A \mathrm{e}^{-k t}+T
$$

Substituting in our room temp, then solve for the initial coffee temp:

$$
y=A \mathrm{e}^{-k t}+70 \quad \Rightarrow \quad 110=A+70 \quad \Rightarrow \quad A=40
$$

Now we have:

$$
y=40 \mathrm{e}^{-k t}+70
$$

Finally, we need the other point in order to solve for $k$ : Use $t=1$ for one hour, and:

$$
80=40 \mathrm{e}^{-k}+70 \Rightarrow \frac{1}{4}=\mathrm{e}^{-k} \quad \Rightarrow \quad \ln \left(4^{-1}\right)=-k \quad \Rightarrow \quad \ln (4)=k
$$

so that you could write:

$$
y(t)=40 \mathrm{e}^{-\ln (4) t}+70
$$

NOTE: Its fine if you write $\mathrm{e}^{\ln (1 / 4) t}$ in place of $\mathrm{e}^{-\ln (4) t}$
9. Let $y^{\prime}=y^{1 / 3}, y(0)=0$. Find two solutions to the IVP. Does this violate the Existence and Uniqueness Theorem?
SOLUTION: Using our usual method,

$$
\int y^{-1 / 3} d y=\int d t \quad \Rightarrow \quad \frac{3}{2} y^{2 / 3}=t+C \quad \Rightarrow \quad y^{2 / 3}=\frac{2}{3} t+C_{2} \quad \Rightarrow \quad y(t)=\left(\frac{2}{3} t\right)^{3 / 2}
$$

Notice that $y(t)=0$ is also a solution to the IVP (this is the equilibrium solution, and is often overlooked!).
10. A salty brine is being pumped into a tank. Suppose the salt is being pumped in at $1 / 2$ pound per gallon, and the brine is coming in at 2 gallons per minute. The brine is well mixed and is being pumped out at 2 gallons per minute. Initially, the tank has 100 gallons of pure water.
(a) Find an IVP that will model the amount of salt in the tank at time $t$.

SOLUTION: Writing it like a linear DE:

$$
\frac{d S}{d t}=-\frac{1}{50} S+1
$$

(b) Without actually solving, if $S(t)$ is the amount of salt in the tank at time $t$, what should $S(t)$ be as $t \rightarrow \infty$ ?
SOLUTION: Over time, the concentration should become the incoming concentration of $1 / 2 \mathrm{lb}$ per gallon- With 100 gallons, that means $S(t) \rightarrow 50$.
(c) Solve the IVP.

SOLUTION:

$$
S(t)=50-50 \mathrm{e}^{-t / 50}
$$

11. Suppose an object with mass of 1 kg is dropped from some initial height. Given that the force due to gravity is 9.8 meters per second squared, and assuming a force due to air resistance of $\frac{1}{2} v^{2}$, find the initial value problem for the velocity at time $t$. In the $(t, y)$ plane, draw several solution curves. How would you go about solving this analytically (you don't need to do that, but tell me how).
SOLUTION: TYPO: I meant $(t, v)$ plane rather than $(t, y)$ plane.
Recall that the general model was: $m v^{\prime}=m g-k v$, or in this case, $m v^{\prime}=m g-k v^{2}$. Subsituting values,

$$
v^{\prime}=9.8-\frac{1}{2} v^{2}, \quad v(0)=0
$$

This is our usual type of autonomous DE. In the $\left(v, v^{\prime}\right)$ plane, we have an upside down parabola, with a source at the negative equilibrium solution and a sink at the positive equilibrium. Since it is autonomous, we could solve this using separation of variables (followed by partial fractions).
12. Suppose you borrow $\$ 10000.00$ at an annual interest rate of $5 \%$. If you assume continuous compounding and continuous payments at a rate of $k$ dollars per month, set up a model for how much you owe at time $t$ in years. Give an equation you would need to solve if you wanted to pay off the loan in 10 years.
Define $S(t)$ to be the amount owed after $t$ years (note that $k$ is given in months, so $12 k$ is needed for years). Then:

$$
\frac{d S}{d t}=\frac{1}{20} S-12 k \quad S(0)=10 \quad(\mathrm{~S} \text { is in thousands })
$$

Solving the IVP, we get:

$$
S(t)=\mathrm{e}^{t / 20}(10-240 k)+240 k
$$

Finding $k$ so that $S(10)=0$, we get:

$$
0=\mathrm{e}^{1 / 2}(10-240 k)+240 k \quad \Rightarrow \quad k \approx 0.1058
$$

This is in thousands, so our monthly payment is $\$ 105.80$, or annual payment is $\$ 1270$. Notice that this means we pay back $\$ 15420$ for the loan.
13. Show that the IVP $x y^{\prime}=y-1, y(0)=2$ has no solution. (Note: Part of the question is to think about how to show that the IVP has no solution).
SOLUTION: If we try to solve it using separation of variables, we get:

$$
\int \frac{d y}{y-1}=\int \frac{d x}{x} \Rightarrow y(x)=A x+1
$$

Notice that $y(0)=1$ for all values of $A$, therefore we cannot determine a value of $A$ that will solve the IVP- The IVP has no solution.
We might note that

$$
\frac{d y}{d x}=f(x, y)=\frac{y-1}{x}
$$

so that, by the Existence and Uniqueness theorem, we have to "watch out" at $x=0$.
14. Suppose that a certain population grows at a rate proportional to the square root of the population. Assume that the population is initially 400 (which is $20^{2}$ ), and that one year later, the population is 625 (which is $25^{2}$ ). Determine the time in which the population reaches 10000 (which is $100^{2}$ ).
SOLUTION: If the rate of change is proportional to the square root of the population, then:

$$
\frac{d P}{d t}=k \sqrt{P}=k P^{1 / 2} \quad \Rightarrow \quad P(t)=(2 k t+C)^{2}
$$

Putting in the intial condition,

$$
20^{2}=\left(0+C_{2}\right)^{2} \quad \Rightarrow \quad C_{2}=20
$$

And the condition at time 1:

$$
25^{2}=(2 k+20)^{2} \quad \Rightarrow \quad P(t)=(5 t+20)^{2}
$$

Finally, solve for $t$ that makes $P=100^{2}$ (find that $t=16$ ).
15. Consider the sketch below of $F(y)$, and the differential equation $y^{\prime}=F(y)$.
(a) Find and classify the equilibrium.

SOLUTION: From the sketch given, $y=0$ is asymptotically stable and $y=1$ is semistable.
(b) Find intervals (in $y$ ) on which $y(t)$ is concave up.

SOLUTION: Examine the intervals $y<0,0<y<1 / 3,1 / 3<y<1$ and $y>1$ separately. The function $y$ will be concave up when $d F / d y$ and $F$ both have the same sign- This happens when $F$ is either increasing and positive (which happens nowhere) or decreasing and negative:

$$
0<y<\frac{1}{3} \quad y>1
$$

(c) Draw a sketch of $y$ on the direction field, paying particular attention to where $y$ is increasing/decreasing and concave up/down. See the figure below.
(d) Find an appropriate polynomial for $F(y)$.

SOLUTION: One example is

$$
y^{\prime}=-y(y-1)^{2}
$$


16. From the direction field, we see three equilibria at $y=0, y=2, y=4$. Sketching the phase line, we see that one possibility is:

$$
y^{\prime}=y(y-2)(y-4)
$$

17. Consider the direction field below, and answer the following questions:
(a) Is the DE possibly of the form $y^{\prime}=f(t)$ ?

SOLUTION: No. The isoclines would be vertical (consider, for example, a vertical line at $t=-3$; the slopes are clearly not equal).
(b) Is the DE possible of the form $y^{\prime}=f(y)$ ?

SOLUTION: No. The isoclines would be horizontal (for example, look at a horizontal line at $y=1$ Some slopes are zero, others are not).
(c) Is there an equilibrium solution? (If so, state it):

SOLUTION: Yes- At $y=0$.
(d) Draw the solution corresponding to $y(-1)=1$.

SOLUTION: Just draw a curve consistent with the arrows shown.
18. Substitution problems:
(a) We can write the expression as:

$$
\frac{d y}{d x}=\frac{1+w}{1-w}
$$

To substitute for $d y / d x$, we write: $y=x w$ and differentiate using the product rule, or $y^{\prime}=w+x w^{\prime}$. Now:

$$
w+x \frac{d w}{d x}=\frac{1+w}{1-w} \quad \Rightarrow \quad x w^{\prime}=\frac{1+w^{2}}{1-w}
$$

and this is clearly separable.
(b) If we multiply by $y$ first,

$$
y y^{\prime}-\frac{3}{2 x} y^{2}=2 x
$$

Substitute $w=y^{2}$, and for the derivative, $w^{\prime}=2 y y^{\prime}$, or $y y^{\prime}=\frac{1}{2} w^{\prime}$ :

$$
\frac{1}{2} w^{\prime}-\frac{3}{2 x} w=2 x \quad \Rightarrow \quad w^{\prime}-\frac{3}{x} w=4 x
$$

And this is linear.
19. Integral practice:
(a)

$$
\int \frac{x}{(x-1)(2-x)} d x=\int \frac{1}{x-1}+\frac{2}{2-x} d x=\ln |x-1|-2 \ln |2-x|+C
$$

(b)

$$
\mathrm{e}^{-3 \ln |t|}=\frac{1}{t^{3}}
$$

20. For partial fractions (we don't need to include the integral signs):
(a) $\frac{x^{2}-1}{(x+1)\left(x^{2}+1\right)}=\frac{A}{x+1}+\frac{B x+C}{x^{2}+1}$
(b) $\frac{3 x}{(x+1)^{2}(x+2)}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{x+2}$
