Worked Examples from Class

There was still some question from $\# 3$ in 6.2. We are given $g_{a}(t)$ in piecewise form and we want to determine its Laplace transform. For specificity, we will find the transform using the table. Here is the function:

$$
g_{a}(t)=\left\{\begin{aligned}
t / a & \text { if } t \leq a \\
1 & \text { if } t>a
\end{aligned}\right.
$$

To put this in a form from which we can use the table, we need to write $g_{a}(t)$ using the Heaviside function. From the "on-off" switch, we write:

$$
g_{a}(t)=\left(u_{0}(t)-u_{a}(t)\right) \frac{t}{a}+u_{a}(t)
$$

Since we work with $t \geq 0$, we can write $u_{0}(t)=1$, and re-writing g_{a}, we get:

$$
g_{a}(t)=\frac{t}{a}+u_{a}(t)\left(1-\frac{t}{a}\right)
$$

Taking the Laplace transform using the table, the first entry uses table entry 2, and the second one uses $\# 10$. More specifically, to use $\# 10$, we write:

$$
u_{a}(t) f(t-a)=u_{a}(t)\left(1-\frac{t}{a}\right)
$$

From this, we need to determine $f(t)$ so that we can compute $F(s)$. We see that:

$$
f(t-a)=\left(1-\frac{t}{a}\right) \Rightarrow f(t)=\left(1-\frac{t+a}{a}\right)=1-\frac{t}{a}+1=-\frac{t}{a}
$$

Therefore, $F(s)=-\frac{1}{a} \frac{1}{s^{2}}$, or all together,

$$
G_{a}(s)=\frac{1}{a s^{2}}-\frac{\mathrm{e}^{-a s}}{a s^{2}}
$$

Extra Example

Suppose that f is given below in piecewise form. Write it in terms of the Heaviside function, then find its Laplace transform.

$$
f(t)=\left\{\begin{aligned}
3 & \text { if } t<1 \\
t^{2} & \text { if } 1 \leq t \leq 4 \\
3 t+1 & \text { if } 4<t \leq 5 \\
\mathrm{e}^{-2 t} & \text { if } t>5
\end{aligned}\right.
$$

SOLUTION: We write this first using the "on-off" switches, one for each function:

$$
f(t)=\left(1-u_{1}(t)\right) 3+\left(u_{1}(t)-u_{4}(t)\right) t^{2}+\left(u_{4}(t)-u_{5}(t)\right)(3 t+1)+u_{5}(t) \mathrm{e}^{-2 t}
$$

To take the Laplace transform, we'll re-write in the form $u_{c}(t) f(t-c)$:

$$
f(t)=3+u_{1}(t)\left(t^{2}-3\right)+u_{4}(t)\left(1+3 t-t^{2}\right)+u_{5}(t)\left(\mathrm{e}^{-2 t}-3 t-1\right)
$$

Now, for each in turn, we write these in the form $u_{c}(t) f(t-c)$, then find $f(t)$ (then find $F(s)$).

$$
f(t-1)=t^{2}-3 \quad \Rightarrow \quad f(t)=(t+1)^{2}-3=t^{2}+2 t-2 \quad \Rightarrow \quad F(s)=\frac{2}{s^{3}}+\frac{2}{s^{2}}-\frac{2}{s}
$$

For the next function,

$$
f(t-4)=1+3 t-t^{2} \Rightarrow f(t)=-t^{2}-5 t-3 \quad \Rightarrow \quad F(s)=-\frac{2}{s^{3}}-\frac{5}{s^{2}}-\frac{3}{s}
$$

And for the last Heaviside,

$$
f(t-5)=\mathrm{e}^{-2 t}-3 t-1 \Rightarrow f(t)=\mathrm{e}^{-2(t+5)}-3 t-16 \quad \Rightarrow \quad F(s)=\frac{\mathrm{e}^{-10}}{s+2}-\frac{3}{s^{2}}-\frac{16}{s}
$$

Now we put it all together-

$$
\frac{3}{s}+\mathrm{e}^{-s}\left(\frac{2}{s^{3}}+\frac{2}{s^{2}}-\frac{2}{s}\right)+\mathrm{e}^{-4 s}\left(-\frac{2}{s^{3}}-\frac{5}{s^{2}}-\frac{3}{s}\right)+\mathrm{e}^{-5 s}\left(\frac{\mathrm{e}^{-10}}{s+2}-\frac{3}{s^{2}}-\frac{16}{s}\right)
$$

OK, we got a little carried away with that one. Here is the last example we were computing in class:

Example

Solve the following using the Laplace transform:

$$
y^{\prime \prime}+2 y^{\prime}+5 y=5\left(1-u_{7}(t)\right), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Taking the Laplace transform of both sides,

$$
\begin{gathered}
\mathcal{L}\left(y^{\prime \prime}\right)+2 \mathcal{L}\left(y^{\prime}\right)+5 \mathcal{L}(y)=\mathcal{L}\left(5-5 u_{7}(t)\right) \\
\left(s^{2}+2 s+5\right) Y(s)=\frac{5}{s}-\frac{5 \mathrm{e}^{-7 s}}{s}=\frac{5-5 \mathrm{e}^{-7 s}}{s}
\end{gathered}
$$

so that

$$
Y(s)=\frac{5-5 \mathrm{e}^{-7 s}}{s\left(s^{2}+2 s+5\right)}=\left(1-\mathrm{e}^{-7 s}\right) \frac{5}{s\left(s^{2}+2 s+5\right)}
$$

Side Remark

If you are inverting something of the form:

$$
\left(\mathrm{e}^{-c_{1} s}-\mathrm{e}^{-c_{2} s}\right) H(s)
$$

then the solution is:

$$
u_{c_{1}}(t) h\left(t-c_{1}\right)-u_{c_{2}}(t) h\left(t-c_{2}\right)
$$

Therefore, we only need to focus on inverting $H(s)$.

Back to the example

In this case, that means inverting the following- We've already done the partial fraction expansion below:

$$
H(s)=\frac{5}{s\left(s^{2}+2 s+5\right)}=\frac{1}{s}-\frac{s+2}{s^{2}+2 s+5}
$$

Invert $1 / s$ as 1.
Invert the second one by first completing the square:

$$
\frac{s+2}{s^{2}+2 s+5}=\frac{s+2}{\left(s^{2}+2 s+1\right)+4}=\frac{s+2}{(s+1)^{2}+2^{2}}
$$

To use the table, we need $s+1$ in the numerator (for the cosine term), so we add/subtract what we need in the numerator:

$$
\frac{s+2}{(s+1)^{2}+2^{2}}=\frac{s+1}{(s+1)^{2}+2^{2}}+\frac{1}{(s+1)^{2}+2^{2}}
$$

Now we need the second fraction to have a " 2 " in the numerator- Multiply and divide by 2 :

$$
\frac{s+1}{(s+1)^{2}+2^{2}}+\frac{1}{2} \frac{2}{(s+1)^{2}+2^{2}}
$$

Now this is ready to invert- Using the table (Entries 5 and 6), we get:

$$
h(t)=1-\mathrm{e}^{-t} \cos (2 t)-\frac{1}{2} \mathrm{e}^{-t} \sin (2 t)
$$

Now the full solution is, in terms of $h(t)$:

$$
y(t)=u_{0}(t) h(t)-u_{7}(t) h(t-7)=h(t)-u_{7}(t) h(t-7)
$$

And we can leave the solution in that form. Let's look at a graph of the solution:

Initially, we see the solution converging to the forced response of 1 . At time $t=7$, the system re-sets, and the new solution oscillates for a bit before converging to 0 .

Other examples:

- Find the inverse Laplace transform:

$$
\frac{s+3}{s^{2}+s+1}
$$

SOLUTION: We'll need to complete the square in the denominator to prep the fraction to look like table entries 5 and 6:

$$
\frac{s+3}{\left(s^{2}+s+1 / 4\right)+3 / 4}=\frac{s+3}{(s+1 / 2)^{2}+3 / 4}
$$

To use $5 / 6$, we need $s+1 / 2$ in the numerator, not $s+3$, so I add and subtract to get the form that we need:

$$
\frac{s+1 / 2}{(s+1 / 2)^{2}+3 / 4}+\frac{5}{2} \frac{1}{(s+1 / 2)^{2}+3 / 4}
$$

In the right-hand expression, we need $\sqrt{3 / 4}$ in the numerator to match the table entry, so we multiply/divide by that to get:

$$
\frac{s+1 / 2}{(s+1 / 2)^{2}+3 / 4}+\frac{5}{2} \sqrt{\frac{4}{3}} \frac{\sqrt{3 / 4}}{(s+1 / 2)^{2}+3 / 4}
$$

Now we're ready to invert.
We have Table Entry 11 summarized in Table Entries 6 and 7 to save time:

$$
f(t)=\mathrm{e}^{-t / 2} \cos \left(\sqrt{\frac{3}{4}} t\right)+\frac{5}{\sqrt{3}} \mathrm{e}^{-t / 2} \sin \left(\sqrt{\frac{3}{4}} t\right)
$$

