Quiz 11 Solutions

1. Write the formula for the Laplace transform of $y^{\prime \prime \prime}$ in terms of $Y(s)=\mathcal{L}(y(t))$.

SOLUTION: $s^{3} Y(s)-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0)$
2. Invert the Laplace transform. You might note that the denominator may be factored.

$$
\frac{(5 s-12) \mathrm{e}^{-3 s}}{s^{2}-5 s+6}
$$

SOLUTION: Using partial fractions, we see that

$$
\frac{5 s-12}{s^{2}-5 s+6}=\frac{3}{s-3}+\frac{2}{s-2}
$$

so that the inverse Laplace transform give us

$$
u_{3}(t)\left(3 \mathrm{e}^{3(t-3)}+2 \mathrm{e}^{2(t-3)}\right)
$$

3. Solve, using the Laplace transform:
(a) $y^{\prime \prime}+4 y^{\prime}+7 y=h(t), y(0)=3$ and $y^{\prime}(0)=0$, where $h(t)= \begin{cases}1, & \text { if } t<3 \\ 0, & \text { if } t \geq 3\end{cases}$ SOLUTION: See the next page for details.

$$
y(t)=3 \mathrm{e}^{-2 t} \cos (\sqrt{3} t)+\frac{6}{\sqrt{3}} \mathrm{e}^{-2 t} \sin (\sqrt{3} t)+u_{3}(t) f(t-3)
$$

where

$$
f(t)=\frac{1}{7}-\frac{1}{7} \mathrm{e}^{-2 t} \cos (\sqrt{3} t)-\frac{2}{7 \sqrt{3}} \mathrm{e}^{-2 t} \sin (\sqrt{3} t)
$$

(b) $y^{\prime \prime}+2 y^{\prime}+5 y=\delta_{3}(t)+u_{6}(t), y(0)=1$ and $y^{\prime}(0)=2$.

SOLUTION: See the next page for details.

$$
y(t)=\mathrm{e}^{-t} \cos (2 t)+\frac{3}{2} \mathrm{e}^{-t} \sin (2 t)+u_{2}(t) g_{1}(t-2)+u_{6}(t) g_{2}(t-6)
$$

where

$$
g_{1}(t)=\frac{1}{2} \mathrm{e}^{-t} \sin (t)
$$

and

$$
g_{2}(t)=\frac{1}{5}-\frac{1}{5} \mathrm{e}^{-t} \cos (2 t)-\frac{1}{10} \mathrm{e}^{-t} \sin (2 t)
$$

Details for 3(a)

From the other side, we had:

$$
Y(s)=\frac{3 s+12}{s^{2}+4 s+7}+\frac{\mathrm{e}^{-3 s}}{s\left(s^{2}+4 s+7\right)}
$$

The first term is ready for the inversion process:

$$
\frac{3 s+12}{s^{2}+4 s+7}=\frac{3(s+2)}{(s+2)^{2}+3}+\frac{6}{\sqrt{3}} \frac{\sqrt{3}}{(s+2)^{2}+3}
$$

The inverse is $g(t)=3 \mathrm{e}^{-2 t} \cos (\sqrt{3} t)+\frac{6}{\sqrt{3}} \mathrm{e}^{-2 t} \sin (\sqrt{3} t)$.
For the second part, we need to perform partial fractions first to get

$$
\frac{1}{s\left(s^{2}+4 s+7\right)}=\frac{1}{7} \frac{1}{s}-\frac{1}{7} \frac{s+4}{(s+2)^{2}+3}=\frac{1}{s}-\frac{1}{7} \frac{s+2}{(s+2)^{2}+3}-\frac{2}{7 \sqrt{3}} \frac{\sqrt{3}}{(s+2)^{2}+3}
$$

The inverse of this is straightforward to read off:

$$
f(t)=\frac{1}{7}-\frac{1}{7} \mathrm{e}^{-2 t} \cos (\sqrt{3} t)-\frac{2}{7 \sqrt{3}} \mathrm{e}^{-2 t} \sin (\sqrt{3} t)
$$

The inverse is therefore $g(t)+u_{3}(t) f(t-3)$, where g, f are defined above.

Details for 3(b)

Taking the transform, we have:

$$
Y(s)=\frac{\mathrm{e}^{-2 s}}{s^{2}+2 s+5}+\frac{\mathrm{e}^{-6 s}}{s\left(s^{2}+2 s+5\right)}+\frac{s+4}{s^{2}+2 s+5}
$$

Taking these each separately, for the first term we see:

$$
\frac{1}{s^{2}+2 s+5}=\frac{1}{2} \frac{2}{(s+1)^{2}+2^{2}} \quad \rightarrow \quad u_{2}(t) \frac{1}{2} \mathrm{e}^{-(t-2)} \sin (2(t-2))
$$

The last term is very similar:

$$
\frac{s+4}{s^{2}+2 s+5}=\frac{s+1}{(s+1)^{2}+2^{2}}+\frac{3}{2} \frac{2}{(s+1)^{2}+2^{2}} \quad \rightarrow \quad \mathrm{e}^{-t} \cos (2 t)+\frac{3}{2} \mathrm{e}^{-t} \sin (2 t)
$$

And finally the middle term. Doing partial fractions, we get:

$$
\frac{1}{s\left(s^{2}+2 s+5\right)}=\frac{1}{5} \frac{1}{s}-\frac{1}{5} \frac{s+2}{s^{2}+2 s+5}=\frac{1}{5} \frac{1}{s}-\frac{1}{5} \frac{s+1}{(s+1)^{2}+2^{2}}-\frac{1}{10} \frac{2}{(s+1)^{2}+2^{2}}
$$

So the inverse of this term will be (including the exponential):

$$
u_{6}(t)\left(\frac{1}{5}-\frac{1}{5} \mathrm{e}^{-(t-6)} \cos (2(t-6))-\frac{1}{10} \mathrm{e}^{-(t-6)} \sin (2(t-6))\right)
$$

