Complex Integrals and the Laplace Transform

There are a few computations for which the complex exponential is very nice to use. Before we get too much farther, here are some facts about integrating expressions that involve i :

Theorem: $\int \mathrm{e}^{(b i) t} d t=\frac{1}{b i} \mathrm{e}^{(b i) t}$
Proof: To prove this, we use Euler's Formula to put the new integral in terms of the usual real integral:

$$
\begin{aligned}
\int \mathrm{e}^{(b i) t} d t== & \int \cos (b t)+i \sin (b t) d t=\int \cos (b t) d t+i \int \sin (b t) d t= \\
& \frac{1}{b} \sin (b t)-\frac{i}{b} \cos (b t)=\frac{\sin (b t)-i \cos (b t)}{b}
\end{aligned}
$$

And

$$
\frac{1}{b i} \mathrm{e}^{(b t) i}=\frac{\cos (b t)+i \sin (b t)}{b i} \cdot \frac{i}{i}=\frac{-\sin (b t)+i \cos (b t)}{-b}=\frac{\sin (b t)-i \cos (b t)}{b}
$$

Therefore, these quantities are the same.
Theorem: $\int \mathrm{e}^{(a+b i) t} d t=\frac{1}{(a+b i)} \mathrm{e}^{(a+b i) t}$
You can work this out, but it is more complicated since we'll need to do integration by parts twice for each integral. It is a nice exercise to try out when you have a little time.

Theorem: The main computational technique is using the following:

$$
\begin{aligned}
& \int \mathrm{e}^{a t} \cos (b t) d t=\operatorname{Re}\left(\int \mathrm{e}^{(a+b i) t} d t\right)=\operatorname{Re}\left(\frac{1}{a+i b} \mathrm{e}^{(a+i b) t}\right) \\
& \int \mathrm{e}^{a t} \sin (b t) d t=\operatorname{Im}\left(\int \mathrm{e}^{(a+b i) t} d t\right)=\operatorname{Im}\left(\frac{1}{a+i b} \mathrm{e}^{(a+i b) t}\right)
\end{aligned}
$$

Worked Example:

1. Use complex exponentials to compute $\int \mathrm{e}^{2 t} \cos (3 t) d t$.

SOLUTION: We note that $\mathrm{e}^{2 t} \cos (3 t)=\operatorname{Re}\left(\mathrm{e}^{(2+3 i) t}\right)$, so:

$$
\int \mathrm{e}^{2 t} \cos (3 t) d t=\operatorname{Re}\left(\frac{1}{2+3 i} \mathrm{e}^{(2+3 i) t}\right)
$$

Simplifying the term inside the parentheses and multiplying out the complex terms:

$$
\begin{gathered}
\mathrm{e}^{2 t}\left(\frac{2-3 i}{4+9}\right)(\cos (3 t)+i \sin (3 t))= \\
\mathrm{e}^{2 t}\left[\left(\frac{2}{13} \cos (3 t)+\frac{3}{13} \sin (3 t)\right)+i\left(-\frac{3}{13} \cos (3 t)+\frac{2}{13} \sin (3 t)\right)\right]
\end{gathered}
$$

Therefore,

$$
\int \mathrm{e}^{2 t} \cos (3 t) d t=\mathrm{e}^{2 t}\left(\frac{2}{13} \cos (3 t)+\frac{3}{13} \sin (3 t)\right)
$$

In fact, we get the other integral for free:

$$
\int \mathrm{e}^{2 t} \sin (3 t) d t=\mathrm{e}^{2 t}\left(\frac{-3}{13} \cos (3 t)+\frac{2}{13} \sin (3 t)\right)
$$

2. Use complex exponentials to compute $\int \sin (a t) d t$

This one is simple enough to do without using complex exponentials, but it does still work.

$$
\begin{gathered}
\int \sin (a t) d t=\operatorname{Im}\left(\int \mathrm{e}^{(a t) i} d t\right)=\operatorname{Im}\left(\frac{1}{a i}(\cos (a t)+i \sin (a t))=\right. \\
\operatorname{Im}\left(\frac{-i}{a}(\cos (a t)+i \sin (a t))\right)=\operatorname{Im}\left(\frac{1}{a} \sin (a t)+i\left(\frac{-1}{a} \cos (a t)\right)\right)=\frac{-1}{a} \cos (a t)
\end{gathered}
$$

3. Use complex exponentials to compute the Laplace transform of $\cos (a t)$:

SOLUTION: Note that $\cos (a t)=\operatorname{Re}\left(\mathrm{e}^{(a t) i}\right)$

$$
\begin{gathered}
\mathcal{L}(\cos (a t))=\int_{0}^{\infty} \mathrm{e}^{-s t} \cos (a t) d t=\operatorname{Re}\left(\int_{0}^{\infty} \mathrm{e}^{-s t} \mathrm{e}^{(a i) t} d t\right)= \\
\operatorname{Re}\left(\int_{0}^{\infty} \mathrm{e}^{-(s-a i) t} d t\right)=\operatorname{Re}\left(\left.\frac{-1}{(s-a i)} \mathrm{e}^{-(s-a i) t}\right|_{t=0} ^{t \rightarrow \infty}\right.
\end{gathered}
$$

What happens to our expression as $t \rightarrow \infty$? The easiest way to take the limit is to check the magnitude (see if it is going to zero):

$$
\left|\frac{-1}{s-a i} \mathrm{e}^{-s t} \mathrm{e}^{(a i) t}\right|=\left|\frac{-1}{s-a i}\right| \cdot\left|\mathrm{e}^{-s t}\right| \cdot\left|\mathrm{e}^{(a i) t}\right|
$$

Now, the first term is a constant and $\mathrm{e}^{(a t) i}$ is a point on the unit circle (so its magnitude is 1). Therefore, the magnitude depends solely on $\mathrm{e}^{-s t}$, where s is any real number.
And, the function $\mathrm{e}^{-s t} \rightarrow 0$ as $t \rightarrow \infty$ for any $s>0$. Therefore,

$$
\lim _{t \rightarrow \infty} \frac{-1}{(s-a i)} \mathrm{e}^{-(s-a i) t}=0
$$

and the Laplace transform is:

$$
\mathcal{L}(\cos (a t))=\operatorname{Re}\left(0-\frac{-1}{s-a i}\right)=\operatorname{Re}\left(\frac{s+a i}{s^{2}+a^{2}}\right)=\frac{s}{s^{2}+a^{2}}
$$

As a side remark, we get the Laplace transform of $\sin (a t)$ for free since it is the imaginary part.

Homework Addition to Section 6.1

1. Use complex exponentials to compute $\int \mathrm{e}^{-2 t} \sin (3 t) d t$.
2. Use complex exponentials to compute the Laplace transform of $\sin (a t)$.
3. Use complex exponentials to compute the Laplace transform of $\mathrm{e}^{a t} \sin (b t)$ and $\mathrm{e}^{a t} \cos (b t)$ (compare to exercises 13,14).
4. Prove that e^{t} goes to infinity faster than any polynomial. You can do that by showing

$$
\lim _{t \rightarrow \infty} \frac{t^{n}}{\mathrm{e}^{t}}=0
$$

5. We can show that $f(x)<g(x)$ for all $x \geq a$ by proving two things: (i) $f(a)<g(a)$, and (ii) $f^{\prime}(x)<g^{\prime}(x)$ for all $x>a$. Use this idea to prove that $\ln (t)<t$ for all $t \geq 1$ (it is true for all $t>0$, but we wouldn't be able to use this argument for $0<t<1$).
6. Show that, if $f(t)$ is bounded (that is, there is a constant A so that $|f(t)| \leq A$ for all t), then f is of exponential order (do this by finding K, a and M from the definition).
7. If the function is of exponential order, find the K, a and M from the definition. Otherwise, state that it is not of exponential order.
Something that may be handy from algebra: $A=\mathrm{e}^{\ln (A)}$.
(a) $\sin (t)$
(d) $e^{t^{2}}$
(b) $\tan (t)$
(e) 5^{t}
(c) t^{3}
(f) t^{t}
8. Use complex exponentials to find the Laplace transform of $t \sin (a t)$.
