Periodic Forcing and Complex Functions

These notes describe how we can use the complex exponential function to compute the particular solution to:

$$
a y^{\prime \prime}+b y^{\prime}+c y=F(t)
$$

when the forcing function F is periodic- or, in particular, when it is a sine or cosine function.
For example, suppose we have:

$$
y^{\prime \prime}-y^{\prime}-2 y=\cos (t)
$$

We could solve for y_{p} by assuming that $y_{p}=A \cos (t)+B \sin (t)$, but we can "embed" the problem into a slightly more general problem:

$$
y^{\prime \prime}-y^{\prime}-2 y=\cos (t)+i \sin (t)=\mathrm{e}^{i t}
$$

We can now solve for y_{p} by assuming that $y_{p}=A \mathrm{e}^{i t}$ - A lot easier! We just have to interpret the answer correctly. We see that if $y_{p}=u(t)+i v(t)$ and solves

$$
y^{\prime \prime}-y^{\prime}-2 y=\cos (t)+i \sin (t)
$$

then $u(t)$ will solve the problem if just $\cos (t)$ is on the RHS. Similarly, if the original problem had $\sin (t)$ on the RHS, then we would have used $v(t)$ for y_{p} for the original problem. Let's check this out more closely.

If we substitute as mentioned, then

$$
y_{p}=A \mathrm{e}^{i t} \quad y_{p}^{\prime}=A i \mathrm{e}^{i t} \quad y_{p}^{\prime \prime}=-A \mathrm{e}^{i t}
$$

Therefore, substituting these into the DE and factoring on the LHS:

$$
A \mathrm{e}^{i t}(-1-i-2)=\mathrm{e}^{i t} \quad \Rightarrow \quad A=\frac{1}{-3-i}=-\frac{1}{3+i}
$$

Remember that we multiply the fraction top and bottom by the conjugate to make the fraction $a+i b$ form:

$$
A=\frac{-1}{3+i} \frac{3-i}{3-i}=\frac{-(3-i)}{10}
$$

To compute y_{p}, multiply $A \mathrm{e}^{i t}$ out. You can FOIL it all out, or you can recall that we only need the real part-
$y_{p}=A \mathrm{e}^{i t}=\left(-\frac{3}{10}+\frac{1}{10} i\right)(\cos (t)+i \sin (t))=\left(-\frac{3}{10} \cos (t)-\frac{1}{10} \sin (t)\right)+i\left(\frac{1}{10} \cos (t)-\frac{3}{10} \sin (t)\right)$
The real part of y_{p} is our solution:

$$
\operatorname{Real}\left(y_{p}(t)\right)=-\frac{3}{10} \cos (t)-\frac{1}{10} \sin (t)
$$

Of course, the full solution to the original ODE would be:

$$
y(t)=C_{1} \mathrm{e}^{-t}+C_{2} \mathrm{e}^{2 t}-\frac{3}{10} \cos (t)-\frac{1}{10} \sin (t)
$$

If the original problem had been:

$$
y^{\prime \prime}-y^{\prime}-2 y=\sin (t)
$$

then the solution would have used the imaginary part of y_{p} in our previous computation, and the solution would be:

$$
y(t)=C_{1} \mathrm{e}^{-t}+C_{2} \mathrm{e}^{2 t}+\frac{1}{10} \cos (t)-\frac{3}{10} \sin (t)
$$

Summary of the technique

Given

$$
a y^{\prime \prime}+b y^{\prime}+c y=\cos (\omega t)
$$

we can use $y_{p}=A \mathrm{e}^{i \omega t}$ as our ansatz (assuming that $\cos (\omega t)$ does not solve the homogeneous equation). Substituting this guess in,

$$
y_{p}=A \mathrm{e}^{i \omega t}, \quad y_{p}^{\prime}=A i \omega \mathrm{e}^{i \omega t}, \quad y_{p}^{\prime \prime}=-A \omega^{2} \mathrm{e}^{i \omega t}
$$

we get:

$$
A \mathrm{e}^{i \omega t}\left(-a \omega^{2}+i b \omega+c\right)=\mathrm{e}^{i \omega t}
$$

so that

$$
A=\frac{1}{c-a \omega^{2}+i b \omega}
$$

We then compute $A \mathrm{e}^{i \omega t}$ and keep only the real part for y_{p} of the original DE.

Example

$$
y^{\prime \prime}-4 y^{\prime}+3 y=\cos (2 t)
$$

Initially, we note that $r^{2}-4 r+3=0$ gives $r=1,3$. We then find the particular solution by taking the ansatz as $y_{p}=A \mathrm{e}^{2 i t}$. Differentiating twice and substituting it into the DE (and factoring the LHS), we get

$$
A \mathrm{e}^{2 i t}(-4-4(2 i)+3)=\mathrm{e}^{2 i t} \Rightarrow A=\frac{1}{-1-8 i}=\frac{-1}{1+8 i}=\frac{-(1-8 i)}{65}
$$

Now we compute $A \mathrm{e}^{2 i t}$ and keep the real part.

$$
A \mathrm{e}^{2 i t}=\left(-\frac{1}{65}+\frac{8}{65} i\right)(\cos (2 t)+i \sin (2 t))
$$

The real part is straightforward to compute, and the full solution is given by

$$
y(t)=C_{1} \mathrm{e}^{t}+C_{2} \mathrm{e}^{3 t}-\frac{1}{65} \cos (2 t)-\frac{8}{65} \sin (2 t)
$$

Practice Problems

Solve each DE below using the complex function technique described here. Be sure to give the full solution for each.

1. $y^{\prime \prime}+2 y^{\prime}+y=\cos (2 t)$
2. $y^{\prime \prime}+2 y^{\prime}+y=\sin (2 t)$
3. $y^{\prime \prime}+2 y^{\prime}+y=3 \cos (2 t)$ (Hint: Use the answer to the first problem)
4. $y^{\prime \prime}+3 y^{\prime}+2 y=\cos (t)$
5. $y^{\prime \prime}+y=\cos (2 t)$
6. $y^{\prime \prime}+y=\sin (t)$ (Careful with this one!)

Solutions

1. $\mathrm{e}^{-t}\left(C_{1}+C_{2} t\right)-\frac{3}{25} \cos (2 t)+\frac{4}{25} \sin (2 t)$
2. $\mathrm{e}^{-t}\left(C_{1}+C_{2} t\right)-\frac{4}{25} \cos (2 t)-\frac{3}{25} \sin (2 t)$
3. Multiply the particular solution in $\# 1$ by 3 :

$$
\mathrm{e}^{-t}\left(C_{1}+C_{2} t\right)-\frac{9}{25} \cos (2 t)+\frac{12}{25} \sin (2 t)
$$

4. $C_{1} \mathrm{e}^{-t}+C_{2} \mathrm{e}^{-2 t}+\frac{1}{10} \cos (t)+\frac{3}{10} \sin (t)$
5. $C_{1} \cos (t)+C_{2} \sin (t)-\frac{1}{3} \cos (2 t)$
6. Multiply your ansatz by t so that

$$
y_{p}=A t \mathrm{e}^{i t} \quad y_{p}^{\prime}=A \mathrm{e}^{i t}(1+i t) \quad y_{p}^{\prime \prime}=A \mathrm{e}^{i t}(2 i-t)
$$

Substitute, and get

$$
A \mathrm{e}^{i t}(2 i)=\mathrm{e}^{i t} \quad \Rightarrow \quad A=\frac{1}{2 i}
$$

And then find that

$$
y(t)=C_{1} \cos (t)+C_{2} \sin (t)-\frac{1}{2} t \cos (t)
$$

Complex Exponential and Integration

As one last example, suppose we wanted to compute

$$
\int \mathrm{e}^{2 x} \sin (3 x) d x
$$

We would have to use integration by parts twice, then get the same integral on both sides of the equation. Doing this with $u=\sin (3 x)$ and $d v=\mathrm{e}^{2 x}$, we get

$$
\int \mathrm{e}^{2 x} \sin (3 x) d x=\frac{1}{2} \mathrm{e}^{2 x} \sin (3 x)-\frac{3}{4} \mathrm{e}^{2 x} \cos (3 x)-\frac{9}{4} \int \mathrm{e}^{2 x} \sin (3 x) d x
$$

Bring the integrals together and solve,

$$
\int \mathrm{e}^{2 x} \sin (3 x) d x=\frac{2}{13} \mathrm{e}^{2 x} \sin (3 x)-\frac{3}{13} \mathrm{e}^{2 x} \cos (3 x)
$$

Rather than doing that, we can instead compute the "larger" integral:

$$
\int \mathrm{e}^{2 x}(\cos (3 x)+i \sin (3 x)) d x=\int \mathrm{e}^{(2+3 i) x} d x
$$

and then take the imaginary part (since we want the integral dealing with sine). The integral of the complex exponential is especially easy:

$$
\frac{1}{2+3 i} \mathrm{e}^{(2+3 i) x}
$$

Expand this out and get the imaginary part:

$$
\mathrm{e}^{2 x}\left(\frac{2}{13}-\frac{3}{13} i\right)(\cos (3 x)+i \sin (3 x))
$$

And indeed the imaginary part is:

$$
\mathrm{e}^{2 x}\left(-\frac{3}{13} \cos (3 x)+\frac{2}{13} \sin (3 x)\right)
$$

which is what we got using the traditional method.

Extra Practice

Try these integrals (for the solutions, type them into Maple!)

1. $\int \mathrm{e}^{x} \cos (x) d x$
2. $\int \mathrm{e}^{-2 x} \sin (x) d x$
3. $\int \mathrm{e}^{3 x} \cos (2 x) d x$
