Solutions - Homework (to replace 7.2)

1. Let A, B be the matrices below. Compute the matrix operation listed.

$$
A=\left[\begin{array}{rr}
1 & -2 \\
2 & 3
\end{array}\right] \quad B=\left[\begin{array}{rr}
2 & -1 \\
-1 & 1
\end{array}\right]
$$

(a) $2 A+B$

SOLUTION:

$$
\left[\begin{array}{rr}
4 & -5 \\
3 & 7
\end{array}\right]
$$

(b) $A B$

$$
\left[\left[\begin{array}{rr}
1 & -2 \\
2 & 3
\end{array}\right]\left[\begin{array}{r}
2 \\
-1
\end{array}\right] \quad\left[\begin{array}{rr}
1 & -2 \\
2 & 3
\end{array}\right]\left[\begin{array}{r}
-1 \\
1
\end{array}\right]\right]=\left[\begin{array}{rr}
4 & -3 \\
1 & 1
\end{array}\right]
$$

(c) $B A$

$$
\left[\left[\begin{array}{rr}
2 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad\left[\begin{array}{rr}
2 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{r}
-2 \\
3
\end{array}\right]\right]=\left[\begin{array}{rr}
0 & -7 \\
1 & 5
\end{array}\right]
$$

(d) $A^{T}+B^{T}$

$$
\left[\begin{array}{rr}
1 & 2 \\
-2 & 3
\end{array}\right]+\left[\begin{array}{rr}
2 & -1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{rr}
3 & 1 \\
-3 & 4
\end{array}\right]
$$

(e) A^{-1} The formula for the inverse is:

$$
\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] \quad \Rightarrow \quad A^{-1}=\frac{1}{7}\left[\begin{array}{rr}
3 & 2 \\
-2 & 1
\end{array}\right]
$$

(f) B^{-1}

Using the previous formula,

$$
B^{-1}=\frac{1}{1}\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]
$$

2. Vectors and matrices might have complex numbers. If $z=3+2 i$ and vector $\mathbf{v}=$ $[1+i, 2-2 i]^{T}$, then find the real part and the imaginary part of $z \mathbf{v}$.
SOLUTION:

$$
z \mathbf{v}=(3+2 i)\left[\begin{array}{c}
1+i \\
2-2 i
\end{array}\right]=\left[\begin{array}{r}
(3+2 i)(1+i) \\
(3+2 i)(2-2 i)
\end{array}\right]=\left[\begin{array}{r}
1+5 i \\
10-2 i
\end{array}\right]
$$

Therefore,

$$
\operatorname{real}(z \mathbf{v})=\left[\begin{array}{r}
1 \\
10
\end{array}\right] \quad \operatorname{imag}(z \mathbf{v})=\left[\begin{array}{r}
5 \\
-2
\end{array}\right]
$$

3. What will the graph of $\mathrm{e}^{2 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]$ be (where t is any real number).

SOLUTION: This is the set of all (positive) multiples of the vector, so it is a "ray" extending through the origin and through (1,2), and then outward.
4. Adding two vectors: Geometrically (and numerically) compute the following, where $\mathbf{u}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Be sure to draw each vector out, and see if you can see a pattern.
(a) $\mathbf{u}+\mathbf{v}$
(b) $\mathbf{u}-2 \mathbf{v}$
(c) $\mathbf{u}+\frac{1}{2} \mathbf{v}$
(d) $-\mathbf{u}+\mathbf{v}$

SOLUTION: See the figures attached. The "rule" is a parallelogram rule- Do you see the parallelograms?

5 . Verify that $\mathbf{x}_{1}(t)$ below satisfies the DE below.

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right] \mathbf{x}, \quad \mathbf{x}_{1}(t)=\mathrm{e}^{3 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

SOLUTION: Let $x_{1}(t)=\mathrm{e}^{3 t}$ and $x_{2}(t)=2 \mathrm{e}^{3 t}$. Then verify that:

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned}
$$

6. Consider

$$
\begin{aligned}
& x^{\prime}=2 x+3 y+1 \\
& y^{\prime}=x-y-2
\end{aligned}
$$

First find the equilibrium solution, x_{e}, y_{e}.
SOLUTION: The equilibrium is where $x^{\prime}=y^{\prime}=0$, or

$$
\begin{aligned}
2 x+3 y & =-1 \\
x-y & =2
\end{aligned} \quad \Rightarrow \quad x_{e}=1, y_{e}=-1
$$

Then show that, if $u=x-x_{e}$ and $v=y-y_{e}$, then

$$
\begin{aligned}
u^{\prime} & =2 u+3 v \\
v^{\prime} & =u-v
\end{aligned}
$$

SOLUTION: We're making a change of variables, $u=x-1$ and $v=y+1$. Then $u^{\prime}=x^{\prime}$ and $v^{\prime}=y^{\prime}$. Now, for the other side of the equations,

$$
\begin{gathered}
2 u+3 v=2(x-1)+3(y+1)=2 x+3 y+1 \\
u-v=(x-1)-(y+1)=x-y-2
\end{gathered}
$$

which are the original ODEs.
7. Each system below is nonlinear. Solve each by first writing the system as $d y / d x$.
(a) $\begin{aligned} x^{\prime} & =y\left(1+x^{3}\right) \\ y^{\prime} & =x^{2}\end{aligned} \Rightarrow \frac{d y}{d x}=\frac{x^{2}}{y\left(1+x^{3}\right)} \quad \Rightarrow \quad y d y=\frac{x^{2}}{1+x^{3}} d x$

Now,

$$
\frac{1}{2} y^{2}=\frac{1}{2} \ln \left(1+x^{3}\right)+C
$$

(b) $\begin{aligned} & x^{\prime}=4+y^{3} \\ & y^{\prime}=4 x-x^{3}\end{aligned} \Rightarrow \frac{d y}{d x}=\frac{4 x-x^{3}}{4+y^{3}} \quad \Rightarrow \quad\left(4+y^{3}\right) d y=4 x-x^{3} d x$

Now,

$$
4 y+\frac{1}{4} y^{4}=2 x^{2}-\frac{1}{4} x^{4}+C
$$

(c) $\begin{aligned} x^{\prime} & =2 x^{2} y+2 x \\ y^{\prime} & =-\left(2 x y^{2}+2 y\right)\end{aligned} \Rightarrow \frac{d y}{d x}=\frac{-\left(2 x y^{2}+2 y\right)}{2 x^{2} y+2 x}$

$$
\left(2 x y^{2}+2 y\right)+\left(2 x^{2} y+2 x\right) \frac{d y}{d x}=0
$$

This is exact, with $M_{y}=4 x y+2$ and $N_{x}=4 x y+2$.
Antidifferentiating M with respect to x, we get:

$$
x^{2} y^{2}+2 x y
$$

If we differentiate that with respect to y, we get $2 x^{2} y+2 x$, so that's our function. The solution is then:

$$
x^{2} y^{2}+2 x y=C
$$

