
Lecture Notes to substitute for 7.3-7.5

We want to solve the system:

x′1 = ax1 + bx2
x′2 = cx1 + dx2

⇒ x′ =

[
a b
c d

]
x

SOLUTION: Use the ansatz x(t) = eλtv.
Then x′ = λeλtv, so that the DE becomes:

Aeλtv = λeλtv ⇒ Av = λv or
av1 + bv2 = λv1
cv2 + dv2 = λv2

If the system above is true for that particular value of λ and non-zero
vector v, then λ is an eigenvalue of the matrix A and v is an associated
eigenvector. Note that while v is not allowed to be the zero vector, λ could
be zero.

Computing Eigenvalues and Eigenvectors:

Consider the system we had:

av1 + bv2 = λv1
cv1 + dv2 = λv2

⇒ (a− λ)v1 +bv2 = 0
cv1 +(d− λ)v2 = 0

That is the key system of equations. We saw last time Ax = 0 has exactly
the zero solution iff det(A) 6= 0. Therefore, for this system to have a non-
trivial solution (which is a non-zero eigenvector), the determinant must
be zero.∣∣∣∣ a− λ b

c d− λ

∣∣∣∣ = 0 ⇒ λ2 − (a+ d)λ+ (ad− bc) = 0

You might recognize those two quantities that are computed as the trace and
determinant of A:

Tr(A) = a+ d det(A) = ad− bc

Theorem: The eigenvalues for the 2× 2 matrix A are found by solving
the characteristic equation:

λ2 − Tr(A)λ+ det(A) = 0

So, given A, compute the Tr(A), the det(A) and the discriminant,

∆ = (Tr(A))2 − 4det(A)

Then the eigenvalues are:

λ =
Tr(A)±

√
∆

2

Just as in Chapter 3, the form of the solution will depend on whether ∆ is
positive (two real λ), negative (two complex λ) or zero (one real λ). Today,
we will focus on the distinct eigenvalues case.
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Examples: Solve for eigenvalues and eigenvectors

Let A =

[
7 2
−4 1

]
. Find eigenvalues and eigenvectors for A.

SOLUTION: We could jump right to the characteristic equation, but for
practice its good to write down what it is we actually want to solve (the
unknowns below are λ, v1, v2):

7v1 + 2v2 = λv1
−4v1 + v2 = λv2

⇒ (7− λ)v1 + 2v2 = 0
−4v2 + (1− λ)v2 = 0

For this to have a non-zero solution v1, v2, the determinant must be zero:

(7− λ)(1− λ) + 8 = 0 ⇒ λ2 − 8λ+ 15 = 0

(Note that the trace is 8, determinant is 15). This factors, so we can solve
for λ:

(λ− 5)(λ− 3) = 0 ⇒ λ = 3, 5

Now, for each λ, go back to our system of equations for v1, v2 and solve.
NOTE: By design, these equations should be multiples of each other!

For λ = 3:

(7− 3)v1 + 2v2 = 0
−4v2 + (1− 3)v2 = 0

⇒ 4v1 + 2v2 = 0

There are an infinite number of solutions (and there always be). We want to
choose “nice” values of v1, v2 that satisfies this relationship (or alternatively,
lies on the line). An easy way of writing v1, v2 is to notice the following:

Given ax+ by = 0, we can choose x = b, y = −a to lie on the line.

Continuing, we’ll take our vector v =

[
1
−2

]
. Now go through the same

process to find the eigenvector for λ = 5:

(7− 5)v1 + 2v2 = 0
−4v1 + (1− 5)v2 = 0

⇒ 2v1 + 2v2 = 0 ⇒ v1 + v2 = 0

Therefore, we take v =

[
1
−1

]
.

An important note: If v is an eigenvector, then so is any scalar multiple
of v (that is, the set of all eigenvectors forms a line). Therefore, when
computing eigenvectors by hand, we typically re-scale them so that they are
integers.
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Example: Solve a Linear System

Solve the linear system using eigenvectors:

x′ =

[
3 1
1 3

]
x

SOLUTION: We find the eigenvalues λ1, λ2, and the corresponding eigenvec-
tors. Then the solution is:

x(t) = C1e
λ1tv1 + C2e

λ2tv2

With that, we first compute the eigenvalues and eigenvectors. The deter-
minant is 8, the trace is 6. The characteristic equation is:

λ2 − 6λ+ 8 = 0 ⇒ (λ− 2)(λ− 4) = 0

Therefore, λ = 2, 4.

• For λ = 2:

(3− 2)v1 + v2 = 0
v1 + (3− 2)v2 = 0

⇒ v1 + v2 = 0
v1 + v2 = 0

⇒ v =

[
−1
1

]

• For λ = 4,

(3− 4)v1 + v2 = 0
v1 + (3− 4)v2 = 0

⇒ −v1 + v2 = 0
v1 − v2 = 0

⇒ v =

[
1
1

]
The general solution is:

x(t) = C1e
2t

[
−1

1

]
+ C2e

4t

[
1
1

]
Visualization of the solutions. Can you locate the lines created by the two
eigenvectors?

3



Example: Solve the linear system.

The technique is the same as the last example. Write it down, try it out,
then come back to this page to see if we have the same answer.

x′ =

[
3 −2
2 −2

]
x Tr(A) = 1 det(A) = −2 ∆ = 9

The characteristic equation is λ2 − λ− 2 = 0, or (λ+ 1)(λ− 2) = 0.
The eigenvalues are λ = −1, 2. The corresponding eigenvectors are found

by solving the system above. For λ = −1:

(3 + 1)v1 − 2v2 = 0
2v1 + (−2 + 1)v2 = 0

2v1 − v2 = 0 v =

[
1
2

]
For λ = 2:

(3− 2)v1 − 2v2 = 0
2v1 + (−2− 2)v2 = 0

v1 − 2v2 = 0 v =

[
2
1

]
The solution to the system of differential equations is then:

x(t) = C1e
−t

[
1
2

]
+ C2e

2t

[
2
1

]
To sketch the graph of the solution, first locate the two lines created by
the eigenvectors. You might notice that if the corresponding eigenvalue is
negative, the solution then moves along the line to the origin (otherwise, the
solution moves along the line to infinity).

The origin is the only equilibrium solution, and in this case (with mixed
signs of the eigenvalues), it is called a saddle point.

Some definitions: Classifying the origin

Given x′ = Ax, the origin is an equilibrium solution.

• If the eigenvalues are both positive, the origin is a source.

• If the eigenvalues are both negative, the origin is a sink.

• If the eigenvalues are mixed in sign, the origin is a saddle.
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