
Lecture Notes: To Replace 7.6-7.8

Today we will finish computing the solution to x′ = Ax by looking at the
case of complex eigenvalues and one real eigenvalue.

Last time, we saw that, to compute eigenvalues and eigenvectors for a
matrix A, we first compute the characteristic equation, then solve for a rep-
resentative eigenvector.

We applied this to x′ = Ax for “Case 1” which was when we had two
distinct real eigenvalues, λ1,v1 and λ2,v2, and saw that the general solution
is:

x = C1e
λ1tv1 + C2e

λ2tv2

Case 2: Complex Eigenvalues

First, let’s look at the eigenvalue/eigenvector computations themselves in an
example: Find the eigenvalues and eigenvectors for the matrix below:

3v1 − 2v2 = λv1
v1 + v2 = λv2

⇒ (3− λ)v1 − 2v2 = 0
v1 + (1− λ)v2 = 0

SOLUTION: Form the characteristic equation using the shortcut or by taking
the determinant of the coefficient matrix:

λ2 − Tr(A)λ+ det(A) = 0 λ2 − 4λ+ 5 = 0 λ = 2± i

Now, if λ = 2 + i, solve for an eigenvector:

(3− (2 + i))v1 −2v2 = 0
v1 +(1− (2 + i))v2 = 0

⇒ (1− i)v1 −2v2 = 0
v1 +(−1− i)v2 = 0

Side Note/Side Computation

Recall that we said that these equations needed to be the same line- Indeed
they are. To see this, if you divide the first equation by 1− i, we get:

1− i
1− i

v1 −
2

1− i
v2 = 0 ⇒ v1 −

2(1 + i)

(12 + 12)
v2 = 0 ⇒ v1 − (1 + i)v2 = 0

which is the second equation.

Returning to the Problem...

Given (1− i)v1 − 2v2 = 0, we can use v =

[
2

1− i

]
.

As a side remark, the other eigenvalue/eigenvector pair are the complex
conjugates (we won’t be using them):

λ2 = 2− i v =

[
2

1 + i

]
The next section tells us how to solve the system.
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Applying Complex evals to Systems of DEs

Suppose we have a complex eigenvalue, λ = a ± ib. Use one of them to
construct the corresponding eigenvector (complex) v. We can then solve the
system using the theorem below.

Theorem: Given λ = a + ib, v for a matrix A in x′ = Ax, the solution to
the system of differential equations is:

x(t) = C1Re
(
eλtv

)
+ C2Im

(
eλtv

)
Notice that this is the extension of what we did in Chapter 3.

Example

Give the general solution to the system x′ =

[
3 −2
1 1

]
x

This is the system for which we already have the eigenvalues and eigen-
vectors:

λ = 2 + i v =

[
2

1− i

]
Now, compute eλtv:

e(2+i)t
[

2
1− i

]
= e2t(cos(t) + i sin(t))

[
2

1− i

]
=

e2t
[

2 cos(t) + 2i sin(t)
(cos(t) + sin(t)) + i(− cos(t) + sin(t))

]
so that the general solution is given by:

x(t) = C1e
2t

[
2 cos(t)

cos(t) + sin(t)

]
+ C1e

2t

[
2 sin(t)

− cos(t) + sin(t)

]
Geometrically, the origin is a spiral source. As a side remark, if I had solved
the second equation for x1 and substituted it into the first, I would have had:

x′′2 − 4x′2 + 5x2 = 0 ⇒ r = 2± i ⇒ x2 = C1e
2t cos(t) + C2e

2t sin(t)

Example

Give the general solution to the system: x′ =

[
2 −5
1 −2

]
x

First, the characteristic equation: λ2 + 1 = 0, so that λ = ±i.
Now we solve for the eigenvector to λ = i:

(2− i)v1 − 5v2 = 0
1v1 + (−2− i)v2 = 0
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Using the second equation, v1 − (2 + i)v2 = 0, and we have our eigen-
value/eigenvector pair. Now we compute the needed quantity, eλtv:

eit
[

2 + i
1

]
= (cos(t) + i sin(t))

[
2 + i

1

]
=

[
(cos(t) + i sin(t))(2 + i)

cos(t) + i sin(t)

]
Simplifying, we get:[

(2 cos(t)− sin(t)) + i(2 sin(t) + cos(t))
cos(t) + i sin(t)

]
The solution is:

x(t) = C1

[
2 cos(t)− sin(t)

cos(t)

]
+ C2

[
2 sin(t) + cos(t)

sin(t)

]
We will quickly verify that this is what we would get using the techniques of
Chapter 3. From the second equation, solve for x1, then use the first equation
to get a second order DE for x2.

x1 = x′2 + 2x2 ⇒ (x′′2 + 2x′2) = 2(x′2 + 2x2)− 5x2 ⇒ x′′2 + x2 = 0

Therefore, x2 = C1 cos(t) + C2 sin(t). Solving for x1:

x1 = x′2 + 2x2 = (−C1 sin(t) + C2 cos(t)) + 2(C1 cos(t) + C2 sin(t))

and we see that we get the identical solution.
Graphically, the solutions are ellipses. In fact, if we solve the differential

equation by computing dy/dx, we get solutions of the form:

x2 − 4xy + 5y2 = C

Graphical Summary- Complex Eigenvalues

Notice that if the real part of λ is positive, solutions “blow up”. If the real
part of λ is negative, y(t) → 0 as t → ∞. Therefore, the origin can be
classified by λ = α± βi:

• If α = 0, we get pure periodic solutions (the period depends on β).

• If α < 0, the origin is a spiral sink.

• If α > 0, the origin is a spiral source.
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Case 3: One Real Eigenvalue, One Eigenvector

In the rare occurrence that you have one eigenvalue but two eigenvectors go
to Case 1. For example, find the eigenvalues and eigenvectors to the identity
matrix. ∣∣∣∣ (1− λ) 0

0 (1− λ)

∣∣∣∣ = 0 ⇒ λ = 1, 1

Now, solve the system for v:

0v1 + 0v2 = 0
0v1 + 0v2 = 0

Both v1, v2 are free variables, so any vectors would work- We could use any
two vectors (non-zero, not multiples of each other) to be our eigenvectors.
Some like to use:

v = v1

[
1
0

]
+ v2

[
0
1

]
And therefore, we have two eigenvectors, [1, 0]T and [0, 1]T . This is not
typical.

Typical Case: A double eigenvalue, one eigenvector

Example:

[
2 3
0 2

]
In this case, λ = 2, 2 but

0v1 + 3v2 = 0
0v1 + 0v2 = 0

⇒ v =

[
1
0

]
This one can be a little tricky, but there is an way to quickly get the

solution if we have the intial conditions, x(0) = x0. Then the solution to
x′ = Ax is given by:

x(t) = eλt(x0 + tw)

If we substitute this back into the DE, we will see that the following needs
to hold:

(A− λI)x0 = w

Example:

x′ =

[
2 3
0 2

]
x, x0 =

[
x0
y0

]
We just computed the eigenvalues to be λ = 2, 2. To find the vector w, we
take:

(2− 2)x0 + 3y0 = w1

0x0 + (2− 2)y0 = w2
⇒ w =

[
3y0

0

]
The full solution is then:

x(t) = e2t
([

x0
y0

]
+ t

[
3y0

0

])
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Example:

x′ =

[
4 −2
8 −4

]
x

The trace is 0 and the determinant is 0. Therefore, λ = 0 is the only
eigenvalue. If there are no initial conditions, assume they are (x0, y0) as the
last example. Then our vector w is computed as:

(4− 0)x0 − 2y0 = w1

8x0 − (4− 0)y0 = w2
w =

[
4x0 − 2y0
8x0 − 4y0

]
The solution is (in several forms):

x(t) =

[
x0
y0

]
+ t

[
4x0 − 2y0
8x0 − 4y0

]
We’ll note that this is just a straight line in the (x1, x2) plane.

Summary

To solve x′ = Ax, find the trace, determinant and discriminant. The eigen-
values are found by solving the characteristic equation:

λ2 − Tr(A)λ+ det(A) = 0 λ =
Tr(A)±

√
∆

2

The solution is one of three cases, depending on ∆:

• Real λ1, λ2 give two eigenvectors, v1,v2:

x(t) = C1e
λ1tv1 + C2e

λ2tv2

• Complex λ = a+ ib, v (we only need one):

x(t) = C1Real
(
eλtv

)
+ C2Imag

(
eλtv

)
• One eigenvalue, one eigenvector v (not used directly).

Use the initial condition, x0 = (x0, y0) and the vector w so that

(a− λ)x0 + by0 = w1

cx0 + (d− λ)y0 = w2
⇔ (A− λI)x0 = w

The solution is then
x(t) = eλt(x0 + tw)

5


