Exercise Set 3 (HW for 7.6, 7.8)

In this homework set, we will practice finding eigenvalues and eigenvectors when the eigenvalues are either complex or the matrix is defective.

1. Given a 2×2 defective matrix A with double eigenvalue λ , eigenvector **v** and generalized eigenvector **w**, show that the function:

$$e^{\lambda t}(t\mathbf{v}+\mathbf{w})$$

solves the differential equation $\mathbf{x}' = A\mathbf{x}$.

- 2. Exercises 1, 3, pg. 409 (Section 7.6, solve with complex evals/evecs)
- 3. Exercises 1, 3, 7, pg. 429 (Section 7.8, solve with degenerate matrix)
- 4. Exercises 13, 15, pg 410 (Section 7.6, try to analyze with parameter-We'll do these more in depth later as well).
- 5. Given the eigenvalues and eigenvectors for some matrix A, write the general solution to $\mathbf{x}' = A\mathbf{x}$. Furthermore, classify the origin as a sink, source, spiral sink, spiral source, saddle, or none of the above.

(a)
$$\lambda = -1 + 2i$$
 $\mathbf{v} = \begin{bmatrix} 1 - i \\ 2 \end{bmatrix}$
(b) $\lambda = -2, 3$ $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
(c) $\lambda = -2, -2$ $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$
(d) $\lambda = 2, -3$ $\mathbf{v}_1 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$
(e) $\lambda = 1 + 3i$ $\mathbf{v} = \begin{bmatrix} 1 \\ 1 - i \end{bmatrix}$
(f) $\lambda = 2i$ $\mathbf{v} = \begin{bmatrix} 1 + i \\ 1 \end{bmatrix}$