Exercise Set 3 (HW for 7.6, 7.8)

In this homework set, we will practice finding eigenvalues and eigenvectors when the eigenvalues are either complex or the matrix is defective.

1. Given a 2×2 defective matrix A with double eigenvalue λ, eigenvector \mathbf{v} and generalized eigenvector \mathbf{w}, show that the function:

$$
\mathrm{e}^{\lambda t}(t \mathbf{v}+\mathbf{w})
$$

solves the differential equation $\mathbf{x}^{\prime}=A \mathbf{x}$.
2. Exercises 1, 3, pg. 409 (Section 7.6, solve with complex evals/evecs)
3. Exercises 1, 3, 7, pg. 429 (Section 7.8, solve with degenerate matrix)
4. Exercises 13, 15, pg 410 (Section 7.6, try to analyze with parameterWe'll do these more in depth later as well).
5. Given the eigenvalues and eigenvectors for some matrix A, write the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$. Furthermore, classify the origin as a sink, source, spiral sink, spiral source, saddle, or none of the above.
(a) $\lambda=-1+2 i \quad \mathbf{v}=\left[\begin{array}{r}1-i \\ 2\end{array}\right]$
(b) $\lambda=-2,3 \quad \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$
(c) $\lambda=-2,-2 \quad \mathbf{v}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$
(d) $\lambda=2,-3 \quad \mathbf{v}_{1}=\left[\begin{array}{r}-1 \\ 2\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{r}2 \\ -1\end{array}\right]$
(e) $\lambda=1+3 i \quad \mathbf{v}=\left[\begin{array}{r}1 \\ 1-i\end{array}\right]$
(f) $\lambda=2 i \quad \mathbf{v}=\left[\begin{array}{r}1+i \\ 1\end{array}\right]$

