Quiz 6 (Take Home) Solutions

1. Suppose we have a harmonic oscillator with mass 1 , spring constant 3 and damping coefficient 4 (and no forcing).
(a) Solve the second order differential equation, if the initial position is 3 and initial velocity is -5 .

SOLUTION: The characteristic equation is $r^{2}+4 r+3=0$, so $r=-1,-3$.

$$
u(t)=C_{1} \mathrm{e}^{-t}+C_{2} \mathrm{e}^{-3 t}
$$

Using the initial conditions, we solve the system:

$$
\begin{aligned}
C_{1}+C_{2} & =3 \\
-C_{1}-3 C_{2} & =-5
\end{aligned} \quad \Rightarrow \quad u(t)=2 \mathrm{e}^{-t}+\mathrm{e}^{-3 t}
$$

(b) The oscillator is OVERDAMPED.
2. For each of the following, give your (final) guess for the form of the particular solution (do NOT solve for the coefficients).

NOTE: The characteristic equation is same for all below, $r=-2,-4$.
(a) $y^{\prime \prime}+6 y^{\prime}+8 y=t \sin (3 t)+\cos (3 t)$

SOLUTION: Think of a polynomial of degree one times the sine/cosine:

$$
y_{p}=(A t+B) \cos (3 t)+(C t+D) \sin (3 t)
$$

(b) $y^{\prime \prime}+6 y^{\prime}+8 y=t^{2} \mathrm{e}^{3 t}$

SOLUTION: $\left(A t^{2}+B t+C\right) \mathrm{e}^{3 t}$
(c) $y^{\prime \prime}+6 y^{\prime}+8 y=\mathrm{e}^{-2 t}$

SOLUTION: We would use $y_{p}=A \mathrm{e}^{-2 t}$, but that is part of the homogeneous solution, so $y_{p}=$ Ate ${ }^{-2 t}$.
3. Solve: $y^{\prime \prime}+3 y^{\prime}+2 y=\cos (2 t)$.

Use the complex exponential to find the particular part of the solution.
SOLUTION: We rewrite the equation as $y^{\prime \prime}+3 y^{\prime}+2 y=\mathrm{e}^{2 i t}$. The ansatz is then $y_{p}=A \mathrm{e}^{2 i t}$, which we subsitute into the DE:

$$
A \mathrm{e}^{2 i t}(-4+6 i+2)=\mathrm{e}^{2 i t} \quad \Rightarrow \quad A=\frac{1}{-2+6 i}=\frac{-2}{40}-\frac{6}{40} i=-\frac{1}{20}-\frac{3}{20} i
$$

Since we started with $\cos (2 t)$, we want the real part of $A \mathrm{e}^{2 i t}$:

$$
\left(-\frac{1}{20}-\frac{3}{20} i\right)(\cos (2 t)+i \sin (2 t))=\left(-\frac{1}{20} \cos (2 t)+\frac{3}{20} \sin (2 t)\right)+i\left(-\frac{3}{20} \cos (2 t)-\frac{1}{20} \sin (2 t)\right)
$$

Notice that you didn't need to compute the imaginary part; we included it for completeness. The particular solution is just the real part:

$$
y_{p}(t)=-\frac{1}{20} \cos (2 t)+\frac{3}{20} \sin (2 t)
$$

