Sample Questions (Chapter 3, Math 244)

1. True or False?
(a) The characteristic equation for $y^{\prime \prime}+y^{\prime}+y=1$ is $r^{2}+r+1=1$
(b) The characteristic equation for $y^{\prime \prime}+x y^{\prime}+\mathrm{e}^{x} y=0$ is $r^{2}+x r+\mathrm{e}^{x}=0$
(c) The function $y=0$ is always a solution to a second order linear homogeneous differential equation.
(d) Consider the function:

$$
y(t)=\cos (t)-\sin (t)
$$

Then amplitude is 1 , the period is 1 and the phase shift is 0 .
2. Find values of a for which any solution to:

$$
y^{\prime \prime}+10 y^{\prime}+a y=0
$$

will tend to zero (that is, $\lim _{t \rightarrow 0} y(t)=0$.
3. - Compute the Wronskian between $f(x)=\cos (x)$ and $g(x)=1$.

- Can these be two solutions to a second order linear homogeneous differential equation? Be specific. (Hint: Abel's Theorem)

4. Construct the operator associated with the differential equation: $y^{\prime}=y^{2}-4$. Is the operator linear? Show that your answer is true by using the definition of a linear operator.
5. The following two parts go together- We're looking at periodic forcing of the undamped mass-spring system:
(a) Solve: $u^{\prime \prime}+\omega_{0}^{2} u=F_{0} \cos (\omega t), \quad u(0)=0 \quad u^{\prime}(0)=0$ if $\omega \neq \omega_{0}$ using the Method of Undetermined Coefficients.
(b) Compute the solution to: $u^{\prime \prime}+\omega_{0}^{2} u=F_{0} \cos \left(\omega_{0} t\right) \quad u(0)=0 \quad u^{\prime}(0)=0$ two ways:

- Start over, with Method of Undetermined Coefficients
- Take the limit of $u(t)$ from Question 5 a as $\omega \rightarrow \omega_{0}$.

6. Given that $y_{1}=\frac{1}{t}$ solves the differential equation:

$$
t^{2} y^{\prime \prime}-2 y=0
$$

Find a fundamental set of solutions using Abel's Theorem.
7. Suppose a mass of 0.01 kg is suspended from a spring, and the damping factor is $\gamma=0.05$. If there is no external forcing, then what would the spring constant have to be in order for the system to critically damped? underdamped?
8. Give the full solution. If there is an initial condition, solve the initial value problem.
(a) $u^{\prime \prime}+u=3 t+4, u(0)=0, u^{\prime}(0)=0$
(b) $y^{\prime \prime}+2 y^{\prime}+10 y=10 t+12+9 \mathrm{e}^{-t}$
(c) $y^{\prime \prime}-2 y^{\prime}+y=4, y(0)=1, y^{\prime}(0)=1$.
(d) $y^{\prime \prime}-2 y^{\prime}+y=3 \cos (2 t), y(0)=2, y^{\prime}(0)=-1$.
(e) $4 y^{\prime \prime}-4 y^{\prime}+y=16 \mathrm{e}^{t / 2}$
(f) $y^{\prime \prime}+9 y=\sum_{m=1}^{N} b_{m} \cos (m \pi t)$
9. For each differential equation below, write the final form of your ansatz for $y_{p}(t)$ using the Method of Undetermined Coefficients. Do not solve for the coefficients.
(a) $y^{\prime \prime}+4 y=3 \sin (2 t)$
(b) $y^{\prime \prime}+4 y^{\prime}+5 y=t^{2} \mathrm{e}^{3 t}+6 t \mathrm{e}^{-2 t} \sin (t)$
10. Rewrite the expression in the form $a+i b$: (i) 2^{i-1} (ii) $\mathrm{e}^{(3-2 i) t}$ (iii) $\mathrm{e}^{i \pi}$
11. Write $a+i b$ in polar form: (i) $-1-\sqrt{3} i$ (ii) $3 i$ (iii) -4 (iv) $\sqrt{3}-i$
12. Find a second order linear differential equation with constant coefficients whose general solution is given by:

$$
y(t)=C_{1}+C_{2} \mathrm{e}^{-t}+\frac{1}{2} t^{2}-t
$$

13. Determine the longest interval for which the IVP is certain to have a unique solution (Do not solve the IVP):

$$
t(t-4) y^{\prime \prime}+3 t y^{\prime}+4 y=2 \quad y(3)=0 \quad y^{\prime}(3)=-1
$$

14. Let $L(y)=a y^{\prime \prime}+b y^{\prime}+c y$ for some value(s) of a, b, c.

If $L\left(3 \mathrm{e}^{2 t}\right)=-9 \mathrm{e}^{2 t}$ and $L\left(t^{2}+3 t\right)=5 t^{2}+3 t-16$, what is the particular solution to:

$$
L(y)=-10 t^{2}-6 t+32+\mathrm{e}^{2 t}
$$

15. Compute the Wronskian of two solutions of the given DE without solving it:

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\alpha^{2}\right) y=0
$$

16. If $y^{\prime \prime}-y^{\prime}-6 y=0$, with $y(0)=1$ and $y^{\prime}(0)=\alpha$, determine the value(s) of α so that the solution tends to zero as $t \rightarrow \infty$.
17. A mass of 0.5 kg stretches a spring an additional 0.05 meters to get to equilibrium. (i) Find the spring constant. (ii) Does a stiff spring have a large spring constant or a small spring constant (explain).
18. A mass of $\frac{1}{2} \mathrm{~kg}$ is attached to a spring with spring constant $2\left(\mathrm{~kg} / \mathrm{sec}^{2}\right)$. The spring is pulled down an additional 1 meter then released. Find the equation of motion if the damping constant is $c=2$ as well:
19. Given that $y_{1}(t)=(t+2) \mathrm{e}^{t}$ and $y_{2}(t)=\mathrm{e}^{t}-2$ are both solutions of a certain DE of the form:

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

then answer each question below, with a short reason.
(a) Show that $W\left(y_{1}, y_{2}\right)(t) \neq 0$.
(b) True or False: y_{1}, y_{2} form a fundamental set of solutions.
(c) True or False: $y_{3}(t)=(t+3) \mathrm{e}^{t}-2$ is also a solution.
(d) True or False: $y_{4}(t)=t \mathrm{e}^{t}+4$ is also a solution.
(e) True or False: $y_{5}(t)=(t+1) \mathrm{e}^{t}$ is also a solution.
(f) Suppose that $y_{p}(t)=-5 \cos (2 t)$ is a solution to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$. Give the general solution:
20. Match the solution curve to its IVP (There is one DE with no graph, and one graph with no DE- You should not try to completely solve each DE). HINT: Think about what kind of behavior you should expect- Is it a purely periodic function? Resonance? etc.
(a) $5 y^{\prime \prime}+y^{\prime}+5 y=0, y(0)=10, y^{\prime}(0)=0$
(b) $y^{\prime \prime}+5 y^{\prime}+y=0, y(0)=10, y^{\prime}(0)=0$
(c) $y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=0, y(0)=10, y^{\prime}(0)=0$
(d) $5 y^{\prime \prime}+5 y=4 \cos (t), y(0)=0, y^{\prime}(0)=0$
(e) $y^{\prime \prime}+\frac{1}{2} y^{\prime}+2 y=10, y(0)=0, y^{\prime}(0)=0$

21. Be sure that you understand all of the homework problems from the Section 3.8 handout.

