Exercise Set 2 (HW to replace 7.3-7.5)

1. Let $\mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{r}-2 \\ 2\end{array}\right]$. Express each of the following vectors as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}$. You're meant to do this graphically, but you might check numerically.

$$
\mathbf{a}=\left[\begin{array}{l}
0 \\
3
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
-4 \\
1
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{l}
6 \\
6
\end{array}\right], \quad \mathbf{d}=\left[\begin{array}{r}
7 \\
-4
\end{array}\right]
$$

2. Give the general solution to each system $\mathbf{x}^{\prime}=A \mathbf{x}$ using eigenvalues and eigenvectors. Draw a sketch of the solutions in the $\left(x_{1}, x_{2}\right)$ plane (or "the phase plane") using the techniques from the video. Finally, classify each as a source, a sink, or a saddle.
(a) $A=\left[\begin{array}{ll}1 & 5 \\ 5 & 1\end{array}\right]$
(c) $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 1\end{array}\right]$
(b) $A=\left[\begin{array}{rr}7 & 2 \\ -4 & 1\end{array}\right]$
(d) $A=\left[\begin{array}{rr}-1 & 0 \\ 3 & -2\end{array}\right]$

