Solutions to the Complex Ansatz Exercises

1. Solve for the particular solution and write it as $R \cos (\omega t-\delta)$
(a) $y^{\prime \prime}+7 y=3 \cos (3 t)$

SOLUTION: First write the "larger" problem as $y^{\prime \prime}+7 y=3 \mathrm{e}^{3 i t}$. The ansatz will be $y_{p}=A \mathrm{e}^{3 i t}$, but we'll only use the real part. Substitute into the DE and factor out $A \mathrm{e}^{3 i t}$:

$$
A \mathrm{e}^{3 i t}(-9+7)=3 \mathrm{e}^{3 i t} \quad \Rightarrow \quad A=-\frac{3}{2} \quad \Rightarrow \quad y_{p}(t)=\operatorname{Re}\left(-\frac{3}{2} \mathrm{e}^{3 i t}\right)
$$

so the particular part of the solution is $y_{p}=-\frac{3}{2} \cos (3 t)$.
(b) $y^{\prime \prime}+y^{\prime}+3 y=2 \sin (2 t)$

SOLUTION: First rewrite as $y^{\prime \prime}+y^{\prime}+3 y=2 \mathrm{e}^{2 i t}$, and the ansatz will be $y_{p}=A \mathrm{e}^{2 i t}$ (imaginary part). Substitute:

$$
A \mathrm{e}^{2 i t}(-4+2 i+3) \mathrm{e}^{3 i t}=2 \mathrm{e}^{3 i t} \quad \Rightarrow \quad A=\frac{2}{-1+2 i}
$$

We take the imaginary part of the expression below (the complex number has been rationalized):

$$
\frac{-2-4 i}{5}(\cos (2 t)+i \sin (2 t)) \Rightarrow y_{p}=\frac{2}{5}(-2 \cos (2 t)-\sin (2 t))
$$

Writing this as $R \cos (\omega t-\delta)$, we see that $R=\frac{2}{\sqrt{5}}$ and $\delta=\tan ^{-1}(1 / 2)+\pi$, or

$$
y_{p}=\frac{2}{\sqrt{5}} \cos \left(2 t-\left(\tan ^{-1}(1 / 2)+\pi\right)\right)
$$

For the next two problems, we'll take the shortcut formulas for the solution.
(c) $y^{\prime \prime}+2 y^{\prime}+y=\cos (2 t)$

SOLUTION: Write $y^{\prime \prime}+2 y^{\prime}+y=\mathrm{e}^{2 i t}$, so $y_{p}=A \mathrm{e}^{2 i t}$. Now,

$$
A \mathrm{e}^{2 i t}(-4+2(2 i)+1)=\mathrm{e}^{2 i t} \quad \Rightarrow \quad A=\frac{1}{-3+4 i}
$$

Therefore, $y_{p}=R \cos (2 t-\delta)$, where

$$
R=\frac{1}{|-3+4 i|}=\frac{1}{\sqrt{5}} \quad \delta=\tan ^{-1}(-4 / 3)+\pi
$$

(d) $y^{\prime \prime}+2 y^{\prime}+2 y=\cos (t)$

SOLUTION: Same idea as before, with $y_{p}=A \mathrm{e}^{i t}$ and substitution gives:

$$
A \mathrm{e}^{i t}(-1+2 i+2)=\mathrm{e}^{i t} \quad \Rightarrow \quad A=\frac{1}{1+2 i}
$$

Therefore, $y_{p}=R \cos (t-\delta)$, where

$$
R=\frac{1}{\sqrt{5}} \quad \delta=\tan ^{-1}(2)
$$

2. Use the complexification technique to find the particular solution to $y^{\prime \prime}+y=\mathrm{e}^{-t} \cos (t)$.

There will be a bit of algebra involved, but not too bad- Write $g(t)$ as $\mathrm{e}^{(\alpha+\beta i) t}$

SOLUTION: First we complexify $g(t)$, so that $y^{\prime \prime}+y=\mathrm{e}^{(-1+i) t}$. Then

$$
y_{p}=A \mathrm{e}^{(-1+i) t}, \quad y_{p}^{\prime}=A(-1+i) \mathrm{e}^{(-1+i) t}, \quad y_{p}^{\prime \prime}=A(-1+i)^{2} \mathrm{e}^{(-1+i) t}
$$

The DE becomes the following, where common factors have been taken out:

$$
A \mathrm{e}^{(-1+i) t}\left((-1+i)^{2}+1\right)=\mathrm{e}^{(-1+i) t} \quad \Rightarrow \quad A=\frac{1}{1-2 i}
$$

We might ask if our shortcut formulas for R, δ still work- And they do! Consider that

$$
A \mathrm{e}^{(-1+i) t}=\mathrm{e}^{-t} A \mathrm{e}^{i t}
$$

We can temporarily take out e^{-t}, compute $R \cos (\omega t-\delta)$, then remember to multiply the answer again by e^{-t}. In this case,

$$
R=\frac{1}{\sqrt{5}}, \quad \delta=\tan ^{-1}(-2), \quad y_{p}=\frac{1}{\sqrt{5}} \mathrm{e}^{-t} \cos \left(t-\tan ^{-1}(-2)\right)
$$

3. If $F(t)=\frac{1}{\alpha+i \beta} \mathrm{e}^{i \omega t}$, then show (by direction computation) that the real part of F can be expressed as

$$
\operatorname{Re}(F(t))=\frac{1}{|\alpha+i \beta|} \cos (\omega t-\delta), \quad \text { where } \delta=\arg (\alpha+i \beta)
$$

And the imaginary part as:

$$
\operatorname{Im}(F(t))=\frac{1}{|\alpha+i \beta|} \cos (\omega t-\delta), \quad \text { where } \delta=\arg (-\beta+i \alpha)
$$

SOLUTION: These are direct computations.

Extra! The Complex Exponential and Integration

The complex exponential can also be used to help compute integrals involving the sine and cosine. As a simple example:

$$
\int \cos (3 t) d t
$$

We can complexify the cosine so the integral becomes $\int \mathrm{e}^{3 i t} d t=\frac{1}{3 i} \mathrm{e}^{3 i t}$, and now take the real part of the answer, which is $\frac{1}{3} \sin (3 t)+C$.

We can do the same with some harder integral- Namely, an exponential times cosine or sine- We'll just complexify the integrand, then at the end take the real or imaginary part (respectively). Here's an example:

$$
\int \mathrm{e}^{-t} \sin (2 t) d t \Rightarrow \int \mathrm{e}^{(-1+2 i) t} d t=\frac{1}{-1+2 i} \mathrm{e}^{(-1+2 i) t}
$$

Of course, we need to be able to interpret and compute the answer. In this case, we want the imaginary part to finish:

$$
\frac{1}{-1+2 i} \mathrm{e}^{2 i t}=\frac{-1-2 i}{5}(\cos (2 t)+i \sin (2 t))
$$

Therefore,

$$
\int \mathrm{e}^{-t} \sin (2 t) d t=-\frac{2}{5} \cos (2 t)-\frac{1}{5} \sin (2 t)+C
$$

Here are some worked examples for you to try yourself:

1. Use the complex exponential to integrate the following:
(a) $\int \mathrm{e}^{-2 t} \cos (t) d t$

SOLUTION: We'll take the real part of:

$$
\int \mathrm{e}^{-2 t} \mathrm{e}^{i t} d t=\int \mathrm{e}^{(-2+i) t} d t=\frac{1}{-2+i} \mathrm{e}^{(-2+i) t}
$$

Expanding this,

$$
\operatorname{Real}\left(\mathrm{e}^{-2 t}\left(\frac{-2-i}{5}(\cos (t)+i \sin (t))\right)=\mathrm{e}^{-2 t}\left(-\frac{2}{5} \cos (t)+\frac{1}{5} \sin (2 t)\right)+C\right.
$$

(b) $\int \mathrm{e}^{t / 2} \sin (3 t) d t$

SOLUTION: Same idea as before:

$$
\int \mathrm{e}^{t / 2} \mathrm{e}^{3 i t} d t=\int \mathrm{e}^{\left(\frac{1}{2}+3 i\right) t} d t=\frac{1}{\frac{1}{2}+3 i} \mathrm{e}^{\left(\frac{1}{2}+3 i\right) t}=\frac{2}{1+6 i} \mathrm{e}^{t / 2}(\cos (3 t)+i \sin (3 t))
$$

A little more simplification:

$$
2 \mathrm{e}^{t / 2}\left(\frac{-1-6 i}{37}(\cos (3 t)+i \sin (3 t))\right.
$$

And we take the imaginary part, so that:

$$
\int \mathrm{e}^{t / 2} \sin (3 t) d t=\mathrm{e}^{t / 2}\left(-\frac{12}{37} \cos (3 t)+\frac{2}{37} \sin (3 t)\right)+C
$$

(c) $\int \mathrm{e}^{-t} \cos (3 t) d t$

SOLUTION: Included here is some shortcut notation you might find useful when computing:

$$
\int \mathrm{e}^{(-1+3 i) t} d t=\frac{1}{-1+3 i} \mathrm{e}^{(-1+3 i) t}=\frac{\mathrm{e}^{-t}}{10}(-1-3 i)(c+i s)=\frac{1}{10}((-c+3 s)+i(-3 c-s))
$$

Therefore, the integral is

$$
-\frac{1}{10} \mathrm{e}^{-t} \cos (3 t)+\frac{3}{10} \mathrm{e}^{-t} \sin (3 t)+C
$$

