The Laplace Transform

$$
\mathcal{L}(f(t))=\int_{0}^{\infty} \mathrm{e}^{-s t} f(t) d t=F(s)
$$

Example

$$
\begin{aligned}
\mathcal{L}\left(\mathrm{e}^{a t}\right)=\int_{0}^{\infty} \mathrm{e}^{-s t} \mathrm{e}^{a t} d t= & \int_{0}^{\infty} \mathrm{e}^{-(s-a) t} d t=\left(-\left.\frac{1}{s-1} \mathrm{e}^{-(s-a) t}\right|_{0} ^{\infty}=\right. \\
& \frac{1}{s-a}, s>a
\end{aligned}
$$

Issues to explore:

- For what f does \mathcal{L} exist?
- Recall how to take the limit (l'Hospital's Rule).
- Recall how to integrate by parts using a table.

Some Laplace Transforms

We showed that $\mathcal{L}\left(\mathrm{e}^{a t}\right)=\frac{1}{s-a}$. What is $\mathcal{L}(1)=\frac{1}{s}$

$$
\begin{gathered}
\mathcal{L}(t)=\int_{0}^{\infty} t \mathrm{e}^{-s t} d t \Rightarrow \begin{array}{ccc}
& t & t \\
- & \mathrm{e}^{-s t} \\
& +0 & (-1 / s) \mathrm{e}^{-s t} \\
& \left(1 / s^{2}\right) \mathrm{e}^{-s t}
\end{array} \Rightarrow \\
\lim _{T \rightarrow \infty}\left(-\frac{t \mathrm{e}^{-s t}}{s}-\left.\frac{\mathrm{e}^{-s t}}{s^{2}}\right|_{0} ^{T}=\frac{1}{s^{2}}\right.
\end{gathered}
$$

Example

Use the computation for $\mathcal{L}\left(\mathrm{e}^{a t}\right)$ to compute

$$
\mathcal{L}(\cos (a t)) \quad \text { and } \quad \mathcal{L}(\sin (a t))
$$

SOLUTION: Complexify $\cos (a t)+i \sin (a t)=\mathrm{e}^{i a t}$ and so

$$
\mathcal{L}\left(\mathrm{e}^{i a t}\right)=\frac{1}{s-i a}=\frac{s+i a}{s^{2}+a^{2}}
$$

Therefore,

$$
\mathcal{L}(\cos (a t))=\frac{s}{s^{2}+a^{2}} \quad \mathcal{L}(\sin (a t))=\frac{a}{s^{2}+a^{2}}
$$

A (Partial) Table of Transforms

$f(t)$	$F(s)$	Notes	
1.	1	$\frac{1}{s} \quad s>0$	Sect 6.1
2.	$\mathrm{e}^{a t}$	$\frac{1}{s-a}$	$s>a$
3.	$t^{n}, \quad \mathrm{n}$ pos int	$\frac{n!}{s^{n+1}}, \quad s>0$	Sect 6.1
4.	$\sin (a t)$	$\frac{a}{s^{2}+a^{2}}, \quad s>0$	Sect 6.1
5.	$\cos (a t)$	$\frac{s}{s^{2}+a^{2}}, \quad s>0$	Sect 6.1

A function is piecewise continuous, it is integrable.
Example on the left, not an example on the right:

PWC if finite set, $t_{0}, t_{1}, \ldots, t_{n}$ s.t.

- $a=t_{0}<t_{1}<t_{2}<\cdots<t_{n}=b$
- f is cont on each $t_{i}<t<t_{i+1}$.
- $\lim _{t \rightarrow t_{1}^{+/-}} f(t)$ exists.

Def: f is of exponential order if it does not grow faster than an exponential function. That is, we can find values of M, a, t_{0} so that

$$
|f(t)| \leq M \mathrm{e}^{a t}, \quad \text { for all } t>t_{0}
$$

Examples:

- All bounded functions (like $\sin (t), \cos (t)$, etc) If $|f(t)| \leq M$ for all t, then $a=0$ and t_{0} is any number.
- All polynomials. Note that

$$
t^{n}=\mathrm{e}^{\ln \left(t^{n}\right)}=\mathrm{e}^{n \ln (t)} \leq \mathrm{e}^{n t} \quad \text { for all } t>0
$$

(Left as an exercise: $\ln (t)<t$ for all $t>0$)

- "Not an example":

$$
\mathrm{e}^{t^{2}}
$$

- Theorem 1:

If f is PWC and of exponential order, then $\mathcal{L}(f(t))$ exists.

- Theorem 2 : \mathcal{L} is a linear operator. That is, for any f, g and constants c,

$$
\mathcal{L}(f(t)+g(t))=\mathcal{L}(f(t))+\mathcal{L}(g(t)) \quad \mathcal{L}(c(f(t))=c \mathcal{L}(f(t))
$$

(Easy to prove- These two things are properties of the integral)

Example

$$
\mathcal{L}\left(3 t-2 e^{3 t}+5\right)=\mathcal{L}(3 t)+\mathcal{L}\left(-2 e^{3 t}\right)+\mathcal{L}(5)=
$$

Continue, using linearity and the previous computations:

$$
3 \mathcal{L}(t)-2 \mathcal{L}\left(\mathrm{e}^{3 t}\right)+5 \mathcal{L}(1)=3 \cdot \frac{1}{s^{2}}-2 \frac{1}{s-3}+5 \frac{1}{s}
$$

The Inverse Transform

The inverse function to the Laplace transform exists as a complex integral, and so we will not formally define it. Rather, we will compute the inverse transform with the utilization of a few facts:

- The inverse Laplace transform exists.
- The inverse Laplace transform is (also) linear.
- A table of transforms will be provided- use it to invert.

Example: If $F(s)=\frac{s}{s^{2}+4}$, what is $f(t)$?

SOLUTION:

Looking at our list of transforms, we see that $f(t)=\cos (2 t)$. For homework examples from 6.1/6.2, go to the next video.

