L003 Section 6.1 Examples, part 1 notes

Note: I usually print out and distribute a table of transforms, but there is one in the text that you can usue- Table 6.2.1 on page 317 (Section 6.2).

Some Computational Examples, post 6.1

- Find the Laplace transform for $t^{2}+2 t+3 \sin (2 t)$ using the properties of the transform and the table of transforms.
SOLUTION:

$$
\mathcal{L}\left(t^{2}+2 t+3 \sin (2 t)\right)=\mathcal{L}\left(t^{2}\right)+2 \mathcal{L}(t)+3 \mathcal{L}\left(\sin (2 t)=\frac{2}{s^{3}}+2 \frac{1}{s^{2}}+3 \frac{2}{s^{2}+4}\right.
$$

- Use the table of transforms to invert the Laplace transform:

$$
\mathcal{L}^{-1}\left(\frac{4}{s-1}\right)=4 \mathcal{L}^{-1}\left(\frac{1}{s-1}\right)=4 \mathrm{e}^{t}
$$

- Find the inverse transform of the given expression:

$$
\frac{3 s}{s^{2}-s-6}=\frac{3 s}{(s+2)(s-3)}=\frac{A}{s+2}+\frac{B}{s-3}
$$

Use partial fractions to see that $A=6 / 5$ and $B=9 / 5$ (details on the video if you need a refresher).

$$
\frac{3 s}{s^{2}-s-6}=\frac{6}{5} \cdot \frac{1}{s+2}+\frac{9}{5} \cdot \frac{1}{s-3}
$$

Taking the inverse transform, we get

$$
\frac{6}{5} \mathrm{e}^{-2 t}+\frac{9}{5} \mathrm{e}^{3 t}
$$

- Find the inverse Laplace transform:

$$
\frac{8 s^{2}-4 s+12}{s\left(s^{2}+4\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+4}
$$

Doing the partial fractions,

$$
8 s^{2}-4 s+12=A\left(s^{2}+4\right)+(B s+C) s=(A+B) s^{2}+C s+4 A
$$

From this, we get three equations by equating the coefficients of the polynomials on the left and the right:

$$
\begin{array}{lrl}
s^{2}: & 8 & =A+B \\
s: & -4 & =C \\
\text { const }: & 12 & =4 A
\end{array} \quad \Rightarrow \quad A=3, B=5, C=-4
$$

Therefore,

$$
\frac{8 s^{2}-4 s+12}{s\left(s^{2}+4\right)}=\frac{3}{s}+\frac{5 s-4}{s^{2}+4}=3 \frac{1}{s}+5 \frac{s}{s^{2}+4}-2 \frac{2}{s^{2}+4}
$$

Now we can invert each piece:

$$
3+5 \cos (2 t)-2 \sin (2 t)
$$

