
L003 Section 6.1 Examples, part 1 notes

Note: I usually print out and distribute a table of transforms, but there is
one in the text that you can usue- Table 6.2.1 on page 317 (Section 6.2).

Some Computational Examples, post 6.1

• Find the Laplace transform for t2 + 2t + 3 sin(2t) using the properties
of the transform and the table of transforms.

SOLUTION:

L(t2 +2t+3 sin(2t)) = L(t2)+2L(t)+3L(sin(2t) =
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• Use the table of transforms to invert the Laplace transform:
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• Find the inverse transform of the given expression:
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Use partial fractions to see that A = 6/5 and B = 9/5 (details on the
video if you need a refresher).
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Taking the inverse transform, we get
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• Find the inverse Laplace transform:
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Doing the partial fractions,

8s2 − 4s + 12 = A(s2 + 4) + (Bs + C)s = (A + B)s2 + Cs + 4A

From this, we get three equations by equating the coefficients of the
polynomials on the left and the right:

s2 : 8 = A + B
s : −4 = C
const : 12 = 4A

⇒ A = 3, B = 5, C = −4
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Therefore,
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Now we can invert each piece:

3 + 5 cos(2t)− 2 sin(2t)
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