Review of Linearization in Calculus

In Calculus I, the linearization of $y=f(x)$ at a point $(a, f(a))$ was defined to be the tangent line to f at a :

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

We are going to do something similar here. It is very difficult to analyze a general non-linear system of differential equations, so we will "linearize" the system at the equilibria, and we know how to analyze linear systems.

In Calculus III, we learn how to linearize $z=f(x, y)$ at a point $(a, b, f(a, b))$ - we get the tangent plane:

$$
L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

From this, you can guess what we do for $w=f(x, y, z)$ at $(a, b, c, f(a, b, c))$:

$$
L(x, y, z)=f(a, b, c)+f_{x}(a, b, c)(x-a)+f_{y}(a, b, c)(y-b)+f_{z}(a, b, c)(z-c)
$$

and so on.

Vector Fields and Linearization

Given a vector field $\mathbf{F}(x, y)$, we can also linearize the whole by linearizing each function. For example, if

$$
\mathbf{F}(x, y)=\left[\begin{array}{l}
f(x, y) \\
g(x, y)
\end{array}\right]
$$

Then the linearization at $x=a, y=b$ is given by:

$$
\mathbf{L}(x, y)=\left[\begin{array}{l}
f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) \\
g(a, b)+g_{x}(a, b)(x-a)+g_{y}(a, b)(y-b)
\end{array}\right]
$$

This is typically written in matrix-vector form:

$$
\mathbf{L}(x, y)=\left[\begin{array}{ll}
f_{x}(a, b) & f_{y}(a, b) \\
g_{x}(a, b) & g_{y}(a, b)
\end{array}\right]\left[\begin{array}{c}
(x-a) \\
(y-b)
\end{array}\right]+\left[\begin{array}{c}
f(a, b) \\
g(a, b)
\end{array}\right]
$$

The matrix of first partial derivatives has a special name- It is the Jacobian matrix for our vector fieldYou might have heard of this matrix in Calc III since it comes up in optimization problems.

Homework: Linearization and some review

1. Find all solutions to each system of equations.
(a) $\begin{aligned}(2+x)(y-x) & =0 \\ (4-x)(y+x) & =0\end{aligned}$
(b) $\begin{aligned} x+x^{2}+y^{2} & =0 \\ y-x y & =0\end{aligned}$
(c) $\begin{aligned} x-x^{2}-x y & =0 \\ 3 y-x y-2 y^{2} & =0\end{aligned}$
2. Linearize each function about the given point.
(a) $f(x)=x^{2}+2 x+1+\cos (x)$ at $x=0$
(b) $f(x, y)=x-2 y+x^{2}+\mathrm{e}^{x y}$ at $x=1, y=0$.
(c) $\mathbf{F}(x, y)=\left[\begin{array}{c}-x+y+2 x y \\ -4 x-y+x^{2}-y^{2}\end{array}\right]$ at $(x=0, y=0)$.
(d) $\mathbf{F}(x, y)=\left[\begin{array}{c}(1+x) \sin (y) \\ 1-x-\cos (y)\end{array}\right]$ at $(x=0, y=0)$.
