Linear Systems and Tanks (Replaces 7.1-7.2)

This is where we'll depart somewhat from the book. We will focus on systems of two equations in two unknowns to simplify our analysis.

Key Definition: A system of equations can be written in matrix-vector form as shown below (this is a definition)

$$
\begin{aligned}
& a x+b y=e \\
& c x+d y=f
\end{aligned} \Leftrightarrow\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
e \\
f
\end{array}\right]
$$

Similarly, we could extend this to three variables (this is just to show you what it would look like):

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}
\end{aligned} \quad \Leftrightarrow \quad\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

More Definitions...

In Calc III, we defined a vector as something with direction and magnitude. For us, a vector is simply a column with a certain number of elements (the vectors above are in \mathbb{R}^{2} since they each have two elements).

A matrix is simply an array of numbers, and the size of a matrix is defined as the number of rows \times the number of columns (similar to a spreadsheet, rows always come first). We identify elements of the array by locating the row and column. For example, in the first matrix, if we call it A, then

$$
\begin{array}{ll}
A(1,1)=a & A(1,2)=b \\
A(2,1)=c & A(2,2)=d
\end{array}
$$

We will work with 2×2 matrices. The definition above gives meaning to matrix-vector multiplication. A couple of examples:

- Write the following system in equivalent matrix-vector form:

$$
\begin{aligned}
3 x-2 y & =4 \\
x+y & =-1
\end{aligned} \quad \text { Solution: } \quad\left[\begin{array}{rr}
3 & -2 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]\left[\begin{array}{r}
4 \\
-1
\end{array}\right]
$$

- Using the definition, perform the matrix-vector multiplication:

$$
\left[\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{r}
1(1)+2(2) \\
-1(1)+3(2)
\end{array}\right]=\left[\begin{array}{l}
5 \\
5
\end{array}\right]
$$

From Calculus III, we already know how to compute the determinant of a 2×2 and a 3×3. There, we used straight lines as shortcut notation for the determinant (this is not the absolute value):

$$
\begin{gathered}
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c \\
\left|\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{cc}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{cc}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{cc}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{gathered}
$$

The transpose of a matrix A is denoted as A^{T} and is formed by taking the columns of A and making them the rows of A^{T}. The trace of a matrix is the sum of the diagonal elements. For example,

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad A^{T}=\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right] \quad \operatorname{Tr}(A)=1+4=5
$$

Scalar Multiplication: Goes like you might suspect- Multiply every element of the matrix.

$$
5\left[\begin{array}{rr}
-1 & 0 \\
1 & 2
\end{array}\right]=\left[\begin{array}{rr}
-5 & 0 \\
5 & 10
\end{array}\right]
$$

Matrix-Matrix Multiplication is defined via matrix-vector multiplication. Think of the second matrix in terms of its columns:

$$
\begin{aligned}
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right] } & =\left[\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
e \\
g
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
f \\
h
\end{array}\right]\right] \\
& =\left[\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right]
\end{aligned}
$$

Example: Compute the following:

$$
\begin{gathered}
{\left[\begin{array}{rr}
-1 & 0 \\
1 & 2
\end{array}\right]\left[\begin{array}{rr}
3 & 1 \\
1 & -2
\end{array}\right]=\left[\begin{array}{rr}
-3+0 & -1+0 \\
3+2 & 1-4
\end{array}\right]} \\
5\left[\begin{array}{rr}
3 & 1 \\
1 & -2
\end{array}\right]=\left[\begin{array}{rr}
15 & 5 \\
5 & -10
\end{array}\right]
\end{gathered}
$$

Inverses and the Identity

There are two special matrices used in matrix multiplication: The identity and the inverse. The identity matrix is a matrix whose only non-zero elements are the ones along its diagonal. It can be any square size, as needed (use the one for which the given multiplication is defined).

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

You will verify in the exercises that, for any matrix A, the identity works like the number 1 in the real numbers:

$$
A I=I A=A
$$

The inverse of a matrix A is another matrix, A^{-1} so that:

$$
A A^{-1}=A^{-1} A=I
$$

You will verify in the exercises that, given a 2×2 matrix, the inverse can be written down directly:

$$
A=\left[\begin{array}{ll}
a & b \tag{1}\\
c & d
\end{array}\right] \quad \Rightarrow \quad A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

Example: If $A\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]$, and λ is arbitrary scalar, compute $A-\lambda I$.

$$
A-\lambda I=\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]=\left[\begin{array}{rr}
2-\lambda & 1 \\
1 & 3-\lambda
\end{array}\right]
$$

Solving the System

In solving a system of equations, there are three (and only three) possible outcomes: (i) Exactly one solution (intersecting lines), (ii) No Solution (parallel lines), (iii) an infinite number of solutions (the same line).

Theorem: If the matrix of coefficients has an inverse, then the system $A \mathbf{x}=\mathbf{b}$ has exactly one solution, $\mathbf{x}=A^{-1} \mathbf{b}$ (which could also be found by Cramer's Rule or computing the inverse directly using Equation 1).

Corollary 1: If the matrix of coefficients has a non-zero determinant, then there is exactly one solution to the system of equations (because we can compute the inverse).

Corollary 2: If we are solving $A \mathbf{x}=\mathbf{0}$ for \mathbf{x}, then we obtain an infinite number of solutions only when $\operatorname{det}(A)=0$ (You might notice that in this system, there are only two possible outcomes rather than three. What are they?)
Examples:

1. Solve the system:

$$
\left[\begin{array}{rr}
-1 & 0 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{r}
2 \\
-3
\end{array}\right]
$$

SOLUTION: The determinant is -2 , so there is exactly one solution. Below we solve it using the inverse (but you could use Cramer's Rule).

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{1}{-2}\left[\begin{array}{rr}
2 & 0 \\
-1 & -1
\end{array}\right]\left[\begin{array}{r}
2 \\
-3
\end{array}\right]=\left[\begin{array}{r}
-2 \\
-1 / 2
\end{array}\right]
$$

2. Solve the system:

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

SOLUTION: The determinant is 0 , so there is an infinite number of solutions (NOTE: We cannot have "no solution", because $x=0$ and $y=0$ is always one solution). The solutions are any (x, y) on either line (which is the same line):

$$
\begin{array}{r}
x+2 y=0 \\
2 x+4 y=0
\end{array}
$$

We always want to represent this in parametric form. To do this, we need a point (in this case, the origin is very nice), and a direction rather than a slope. Note that if the slope is m, the direction would be $\langle 1, m\rangle$

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]+t\left[\begin{array}{r}
1 \\
-1 / 2
\end{array}\right] \quad \text { or } \quad t\left[\begin{array}{r}
2 \\
-1
\end{array}\right] \quad \text { or } \quad t\left[\begin{array}{r}
-2 \\
1
\end{array}\right]
$$

There are an infinite number of ways of parameterizing the line- In the three cases above, the $t^{\prime} s$ are not equal to each other.

More on Lines and Rays

Recall from Calculus III: A line in two or three dimensions is defined by a point \vec{p} and the direction \vec{q} :

$$
\vec{p}+t \vec{q} \quad-\infty<t<\infty
$$

So, for example, the line going through the point $(1,2,3)$ in the direction of $\langle 1,-1,1\rangle$ can be written as:

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+t\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1+t \\
2-t \\
3+t
\end{array}\right]
$$

Extra Example: What does this look like:

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+\mathrm{e}^{t}\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right] \quad-\infty<t<\infty
$$

SOLUTION: It is a ray rather than a line. As $t \rightarrow-\infty$, the length of the vector goes to zero (the line goes to the point), then as t increases, we move farther and farther in the direction given.

Systems of DEs and Matrices

Definition: An autonomous system of first order linear differential equations is a system of the following form. These are each equivalent to the other.

$$
\begin{aligned}
& x_{1}^{\prime}=a x_{1}+b x_{2} \\
& x_{2}^{\prime}=c x_{1}+d x_{2}
\end{aligned} \quad \Leftrightarrow \quad\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \Leftrightarrow \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

Definition: A solution to the system is a set of parametric functions that satisfies the given relationship.
Definition: The trivial solution: the origin $\left(x_{1}=0, x_{2}=0\right)$ is always a solution to the autonomous linear system. In fact, any constant solution to $A \mathbf{x}=\mathbf{0}$ is an equilibrium solution.

Examples

1. Show that $\mathbf{x}(t)=[\cos (t), \sin (t)]^{T}$ solves the system:

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right] \mathbf{x}
$$

SOLUTION: We compute $\mathbf{x}^{\prime}(t)$ first, then we'll compute the matrix-vector on the right side of the equation. We want those two computations to be the same:

For the derivatives, we get $x_{1}^{\prime}(t)=-\sin (t)$ and $x_{2}^{\prime}(t)=\cos (t)$.
For the matrix-vector computation, we get:

$$
\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
\cos (t) \\
\sin (t)
\end{array}\right]=\left[\begin{array}{r}
-\sin (t) \\
\cos (t)
\end{array}\right]
$$

We see that they match.
2. Show that $\mathbf{x}(t)=\mathrm{e}^{2 t}\left[\begin{array}{l}4 \\ 2\end{array}\right]$ solves the differential equation:

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right] \mathbf{x}
$$

SOLUTION: As before, first compute \mathbf{x}^{\prime}, then compute $A \mathbf{x}$ and see if they are the same quantity:

$$
\begin{aligned}
& \text { - } \mathrm{x}^{\prime}=2 \mathrm{e}^{2 t}\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\mathrm{e}^{2 t}\left[\begin{array}{l}
8 \\
4
\end{array}\right] \\
& \text { - } A \mathbf{x}=\left[\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right] \mathrm{e}^{2 t}\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\mathrm{e}^{2 t}\left[\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\mathrm{e}^{2 t}\left[\begin{array}{l}
3(4)-2(2) \\
2(4)-2(2)
\end{array}\right]=\mathrm{e}^{2 t}\left[\begin{array}{l}
8 \\
4
\end{array}\right]
\end{aligned}
$$

Tank Mixing

Consider a system of two tanks, A and B. Initially, they both contain 50 gallons of pure water. A pipe flowing at $1 \mathrm{gal} / \mathrm{min}$ is pumping $2 \mathrm{oz} / \mathrm{gal}$ of salt into tank A, and is pumping brine at $2 \mathrm{gal} / \mathrm{min}$ with $3 \mathrm{oz} / \mathrm{gal}$ of salt into tank B. Further, there are tubes connecting tanks A and B, each is pumping at $1 \mathrm{gal} / \mathrm{min}$. Lastly, a pipe leading out is pumping at 1 $\mathrm{gal} / \mathrm{min}$ for tank A, and $2 \mathrm{gal} / \mathrm{min}$ from tank B (see the figure). Model the amount of salt in the tanks at time t.

SOLUTION: Remember to model (Rate of change) $=$ Rate in - Rate out.
Let $A(t), B(t)$ be the ounces of salt in Tanks A, B respectively. Then for tank A, we have the following. You might note that when brine is being pumped out, the destination doesn't really matter. For example, the "rate out" for tank A can be computed by combining the outputs to the outside and to tank B.

$$
\begin{aligned}
& \frac{d A}{d t}=\left(\frac{2 \mathrm{oz}}{\mathrm{gal}} \cdot \frac{1 \mathrm{gal}}{\mathrm{~min}}+\frac{1 \mathrm{gal}}{\mathrm{~min}} \cdot \frac{B \mathrm{oz}}{50 \mathrm{gal}}\right)-\left(\frac{2 \mathrm{gal}}{\mathrm{~min}} \cdot \frac{A \mathrm{oz}}{50 \mathrm{gal}}\right) \\
& \frac{d B}{d t}=\left(\frac{3 \mathrm{oz}}{\mathrm{gal}} \cdot \frac{2 \mathrm{gal}}{\mathrm{~min}}+\frac{1 \mathrm{gal}}{\mathrm{~min}} \cdot \frac{A \mathrm{oz}}{50 \mathrm{gal}}\right)-\left(\frac{3 \mathrm{gal}}{\mathrm{~min}} \cdot \frac{B \mathrm{oz}}{50 \mathrm{gal}}\right)
\end{aligned}
$$

Simplifying a bit, we have:

$$
\left[\begin{array}{l}
A^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-2 / 50 & 1 / 50 \\
1 / 50 & -3 / 50
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]+\left[\begin{array}{l}
2 \\
6
\end{array}\right]
$$

To find the equilibrium, we set the derivatives to zero. To simplify the equations, we'll also multiply by 50 .

$$
\begin{aligned}
-2 A+B+100 & =0 \\
A-3 B+300 & =0
\end{aligned} \Rightarrow \quad \begin{aligned}
2 A-B & =100 \\
-A+3 B & =300
\end{aligned}
$$

Using your favorite technique (substitution or Cramer's rule), we find that

$$
A=120 \quad B=140
$$

You should check that these seem reasonable.
You might have noticed that we don't have the form $\mathbf{x}^{\prime}=A \mathbf{x}$, but we're close. We can actually make our system look like this by making a small substitution:

$$
\begin{aligned}
& x_{1}=A-120 \\
& x_{2}=B-140
\end{aligned}
$$

Now we create our system in x_{1}, x_{2}. First, we see that $x_{1}^{\prime}=A^{\prime}$ and $x_{2}^{\prime}=B^{\prime}$. Furthermore, we see that
$\left[\begin{array}{cc}-2 / 50 & 1 / 50 \\ 1 / 50 & -3 / 50\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{cc}-2 / 50 & 1 / 50 \\ 1 / 50 & -3 / 50\end{array}\right]\left[\begin{array}{c}A-120 \\ B-140\end{array}\right]=\begin{aligned} & \frac{-2}{50} A+\frac{1}{50} B+2 \\ & \frac{1}{50} A-\frac{3}{50} B+6\end{aligned}=\left[\begin{array}{c}A^{\prime} \\ B^{\prime}\end{array}\right]$
Therefore, using the substitution $x_{1}=A-120$ and $x_{2}=B-140$, the equivalent system of equations is given by:

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-2 / 50 & 1 / 50 \\
1 / 50 & -3 / 50
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Homework (to replace 7.2)

1. Let A, B be the matrices below. Compute the matrix operation listed.

$$
A=\left[\begin{array}{rr}
1 & -2 \\
2 & 3
\end{array}\right] \quad B=\left[\begin{array}{rr}
2 & -1 \\
-1 & 1
\end{array}\right]
$$

(a) $2 A+B$
(c) $B A$
(e) A^{-1}
(b) $A B$
(d) $A^{T}+B^{T}$
(f) B^{-1}
2. Vectors and matrices might have complex numbers. If $z=3+2 i$ and vector $\mathbf{v}=$ $[1+i, 2-2 i]^{T}$, then find the real part and the imaginary part of $z \mathbf{v}$.
3. If a line goes through $(1,2)$ in the direction of the vector $\langle-1,1\rangle$, write the equation of the line as $y=m x+b$.
4. Write the vector (parametric) form of the line (i) $y=2 x+3$, (ii) $2 x+3 y=1$
5. Write the parametric form of the line through the point $(2,3)$ with slope 2 .
6. What will the graph of $\mathrm{e}^{2 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]$ be (where t is any real number).
7. Adding two vectors: Geometrically (and numerically) compute the following, where $\mathbf{u}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Be sure to draw each vector out, and see if you can see a pattern.
(a) $\mathbf{u}+\mathbf{v}$
(b) $\mathbf{u}-2 \mathbf{v}$
(c) $\mathbf{u}+\frac{1}{2} \mathbf{v}$
(d) $-\mathbf{u}+\mathbf{v}$
8. Verify that $\mathbf{x}_{1}(t)$ below satisfies the DE below.

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right] \mathbf{x}, \quad \mathbf{x}_{1}(t)=\mathrm{e}^{3 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

9. Consider

$$
\begin{aligned}
x^{\prime} & =2 x+3 y+1 \\
y^{\prime} & =x-y-2
\end{aligned}
$$

First find the equilibrium solution, x_{e}, y_{e}. Then show that, if $u=x-x_{e}$ and $v=y-y_{e}$, then

$$
\begin{aligned}
u^{\prime} & =2 u+3 v \\
v^{\prime} & =u-v
\end{aligned}
$$

10. Each system below is nonlinear. Solve each by first writing the system as $d y / d x$.
(a) $\quad \begin{aligned} & x^{\prime}=y\left(1+x^{3}\right) \\ & y^{\prime}=x^{2}\end{aligned}$
(b) $\begin{aligned} & x^{\prime}=4+y^{3} \\ & y^{\prime}=4 x-x^{3}\end{aligned}$
(c) $\begin{aligned} & x^{\prime}=2 x^{2} y+2 x \\ & y^{\prime}=-\left(2 x y^{2}+2 y\right)\end{aligned}$
(Note: Some of these may be exact.)
