Exercise Set for Complex Eigenvalues

1. For each matrix below, solve $\mathbf{x}^{\prime}=A_{i} \mathbf{x}$, then sketch the solution being careful of the rotation. Label the origin appropriately (spiral sink, spiral source or center).

$$
A_{1}=\left[\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right], \quad A_{2}=\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right], \quad A_{3}=\left[\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right]
$$

2. Given the eigenvalues and eigenvectors for some matrix A, write the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$. Furthermore, classify the origin as a sink, source, spiral sink, spiral source, saddle, and give a sketch of the solution (go ahead and assume CW rotation if needed).
(a) $\lambda=-1+2 i \quad \mathbf{v}=\left[\begin{array}{r}1-i \\ 2\end{array}\right]$
(b) $\lambda=-2,3 \quad \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$
(c) $\lambda=-1,-3 \quad \mathbf{v}_{1}=\left[\begin{array}{r}-1 \\ 2\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{r}2 \\ -1\end{array}\right]$
(d) $\lambda=1+3 i \quad \mathbf{v}=\left[\begin{array}{r}1 \\ 1-i\end{array}\right]$
(e) $\lambda=2 i \quad \mathbf{v}=\left[\begin{array}{r}1+i \\ 1\end{array}\right]$
